Tumor cells express HYAL1 hyaluronidase, which degrades hyaluronic acid. HYAL1 expression in bladder cancer cells promotes tumor growth, invasion, and angiogenesis. We previously described five alternatively spliced variants of HYAL1 that encode enzymatically inactive proteins. The HYAL1-v1 variant lacks a 30-amino acid sequence that is present in HYAL1. In this study, we examined whether HYAL1-v1 expression affects bladder cancer growth and invasion by stably transfecting HT1376 bladder cancer cells with a HYAL1-v1 cDNA construct. Although HYAL1-v1 transfectants expressed equivalent levels of enzymatically active HYAL1 protein when compared with vector transfectants, their conditioned medium had 4-fold less hyaluronidase activity due to a noncovalent complex formed between HYAL1 and HYAL1-v1 proteins. HYAL1-v1 transfectants grew 3- to 4-fold slower due to cell cycle arrest in the G(2)-M phase and increased apoptosis. In HYAL1-v1 transfectants, cyclin B1, cdc2/p34, and cdc25c levels were > or =2-fold lower than those in vector transfectants. The increased apoptosis in HYAL1-v1 transfectants was due to the extrinsic pathway involving Fas and Fas-associated death domain up-regulation, caspase-8 activation, and BID cleavage, leading to caspase-9 and caspase-3 activation and poly(ADP-ribose) polymerase cleavage. When implanted in athymic mice, HYAL1-v1-expressing tumors grew 3- to 4-fold slower and tumor weights at day 35 were 3- to 6-fold less than the vector tumors (P < 0.001). Whereas vector tumors were infiltrating and had high mitoses and microvessel density, HYAL1-v1 tumors were necrotic, infiltrated with neutrophils, and showed low mitoses and microvessel density. Therefore, HYAL-v1 expression may negatively regulate bladder tumor growth, infiltration, and angiogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.CAN-06-1121 | DOI Listing |
J Med Internet Res
January 2025
Univ Rennes, CHU Rennes, INSERM, LTSI - UMR 1099, F-35000 Rennes, France.
Background: To reduce the mortality related to bladder cancer, efforts need to be concentrated on early detection of the disease for more effective therapeutic intervention. Strong risk factors (eg, smoking status, age, professional exposure) have been identified, and some diagnostic tools (eg, by way of cystoscopy) have been proposed. However, to date, no fully satisfactory (noninvasive, inexpensive, high-performance) solution for widespread deployment has been proposed.
View Article and Find Full Text PDFJAMA Netw Open
January 2025
Davidoff Cancer Center, Rabin Medical Center, Petach Tikvah, Israel.
Importance: Three similar phase 3 randomized clinical trials have investigated PD-1/PD-L1 (programmed cell death 1 protein/programmed cell death 1 ligand 1) inhibitors in combination with platinum-based chemotherapy vs chemotherapy alone as first-line treatment for advanced urothelial carcinoma (IMvigor130, atezolizumab; KEYNOTE-361, pembrolizumab; and CheckMate901, nivolumab). Only CheckMate901 reported overall survival (OS) benefit for the combination. The reason for these inconsistent results is unclear.
View Article and Find Full Text PDFRadiol Oncol
January 2025
1State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, China.
Background: This study evaluates the contouring variability among observers using MR images reconstructed by different sequences and quantifies the differences of automatic segmentation models for different sequences.
Patients And Methods: Eighty-three patients with pelvic tumors underwent T1-weighted image (T1WI), contrast enhanced Dixon T1-weighted (T1dixonc), and T2-weighted image (T2WI) MR imaging on a simulator. Two observers performed manual delineation of the bladder, anal canal, rectum, and femoral heads on all images.
Front Immunol
January 2025
Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
As an antibody-drug conjugate (ADC), disitamab vedotin (RC48) is a promising treatment targeting ERBB2 for locally advanced and metastatic bladder cancer (BLCA). However, the subtype heterogeneity of muscle-invasive bladder cancer (MIBC) often leads to different therapeutic outcomes. In our study, we aim to explore sensitivity differences and mechanisms of different molecular subtypes of MIBC to RC48 treatment and develop a strategy for combination therapy against cancer.
View Article and Find Full Text PDFFront Oncol
January 2025
School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom.
Background: Non-muscle-invasive Bladder Cancer (NMIBC) is notorious for its high recurrence rate of 70-80%, imposing a significant human burden and making it one of the costliest cancers to manage. Current prediction tools for NMIBC recurrence rely on scoring systems that often overestimate risk and lack accuracy. Machine learning (ML) and artificial intelligence (AI) are transforming oncological urology by leveraging molecular and clinical data to enhance predictive precision.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!