Purpose: Delivery of growth factor genes that may substantially increase the healing rate of injured digital flexor tendons is a new application of gene therapy. Adenoviral, adeno-associated viral (AAV), and liposome-plasmid vectors have been used to deliver genes to tendons, but the tendon reactions to these vectors--particularly in contrast to the healing responses in the injured tendons--were unknown. This study was designed to compare the tissue reactions of the earlier-mentioned vectors in tendons with the healing responses of injured flexor tendons.
Methods: Forty-two flexor digitorum profundus tendons of 6 New Zealand white rabbits were used. Eighteen tendons were divided into 3 groups of 6 each and injected with different vectors: adenoviral vector, AAV2-luciferase vector, or pCMV-beta vector with liposome. Another 12 tendons were cut and repaired. At 3, 7, and 14 days, the tendons were harvested and stained with hematoxylin and eosin. Normal flexor tendons were harvested as controls.
Results: The tissue reactions of the liposome-plasmid vector in tendons were the most prominent among the 3 vectors tested. The adenoviral vector elicited a moderate degree of tissue reaction. The AAV2 vector caused remarkable reactions in epitenon but almost no reactions in endotenon. Early-stage tissue reactions were more robust in the injured tendons. Compared with early-stage inflammatory and healing responses, the reactions elicited by these vectors were less severe.
Conclusions: The 3 gene delivery systems tested elicit less severe tissue reactions in flexor tendons compared with early-stage inflammatory changes in injured tendons. Adenoviral and AAV vectors elicit less severe tissue reactions than liposome-plasmid vectors. The AAV2 vector appears to cause almost no reaction in endotenon. In terms of tissue reactions, the adenoviral and AAV2 vectors, in particular AAV2, are suitable gene delivery systems for future gene transfer to the tendon in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhsa.2006.09.007 | DOI Listing |
Aging Cell
December 2024
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Aging is accompanied by multiple molecular changes that contribute to aging associated pathologies, such as accumulation of cellular damage and mitochondrial dysfunction. Tissue metabolism can also change with age, in part, because mitochondria are central to cellular metabolism. Moreover, the cofactor NAD, which is reported to decline across multiple tissues during aging, plays a central role in metabolic pathways such as glycolysis, the tricarboxylic acid cycle, and the oxidative synthesis of nucleotides, amino acids, and lipids.
View Article and Find Full Text PDFMetabolites
November 2024
Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS, University Lyon, F-69367 Lyon, France.
Phosphatases are enzymes that catalyze the hydrolysis of phosphate esters. They play critical roles in diverse biological processes such as extracellular nucleotide homeostasis, transport of molecules across membranes, intracellular signaling pathways, or vertebrate mineralization. Among them, tissue-nonspecific alkaline phosphatase (TNAP) is today increasingly studied, due to its ubiquitous expression and its ability to dephosphorylate a very broad range of substrates and participate in several different biological functions.
View Article and Find Full Text PDFCureus
November 2024
Pharmacovigilance, Regional Training Center and ADR (Adverse Drug Reaction) Monitoring Center, Amrita Institute of Medical Science, Amrita Vishwa Vidyapeetham, Ernakulam, IND.
Objective: This study aimed to analyze the pattern, severity, and outcomes of adverse drug reactions (ADRs) associated with rituximab use reported to a regional pharmacovigilance center in Kerala, India.
Methods: This retrospective study analyzed rituximab-associated ADRs reported from 2017 to 2023. ADRs were assessed using the WHO-UMC criteria for causality and the Modified Hartwig Siegel Scale for severity.
Radiother Oncol
December 2024
IRCCS San Raffaele Scientific Institute, Medical Physics Dept., Milan, Italy. Electronic address:
Purpose: The aim is to train and validate a multivariable Normal Tissue Complication Probability (NTCP) model predicting acute skin reactions in patients with breast cancer receiving adjuvant Radiotherapy (RT).
Methods And Materials: We retrospectively reviewed 1570 single-institute patients with breast cancer treated with whole breast irradiation (40 Gy/15fr). The patients were divided into training (n = 878, treated with 3d-CRT, from 2009 to 2017) and validation cohorts (n = 692, treated from 2017 to 2021, including advanced RT techniques).
Biomaterials
December 2024
Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA. Electronic address:
The rapid approval of SARS-CoV-2 mRNA lipid nanoparticle (LNP) vaccines indicates the versatility of mRNA LNPs in an urgent vaccine need. However, the mRNA vaccines do not induce mucosal cellular responses or broad protection against recent variants. To improve cross-protection of mRNA vaccines, here we engineered a pioneered mRNA LNP encapsulating with mRNA constructs encoding cytokine adjuvant and influenza A hemagglutinin (HA) antigen for intradermal vaccination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!