To investigate the influence of normal insulin levels on levels of the insulin-like growth factor binding protein-1 (IGFBP-1) we measured this peptide postabsorptively and during hyperglycemic clamp in 17 healthy subjects, nine with low insulin response (LIR) and eight with high insulin response (HIR). The study was performed before and after 60 hours of treatment with dexamethasone 6 mg/d. The fasting levels of IGFBP-1 were significantly higher in LIR, 36 +/- 2.5 micrograms/L, than in HIR, 22 +/- 2.6 micrograms/L (P less than .01), while no differences in glucose, insulin, and C-peptide concentrations were found. Dexamethasone induced an increase in basal concentrations of insulin, while IGFBP-1 levels decreased to 18.8 +/- 2 micrograms/L in LIR (P less than .01) and to 14.0 +/- 0.9 micrograms/L in HIR (P less than .05). There was no correlation between the individual basal IGFBP-1 concentrations and basal insulin levels. In contrast, basal levels of IGFBP-1 were inversely correlated to the integrated insulin or C-peptide concentrations during the hyperglycemic clamp both before (r = -.67, P less than .01) and during dexamethasone (r = -.79, P less than .001). Dexamethasone, which increased the insulin resistance, did not change the relationship between basal IGFBP-1 and the glucose-induced insulin release. In conclusion, the morning levels of IGFBP-1 in healthy subjects reflect the acute beta-cell responsiveness to glucose, which may correspond to integrated diurnal insulin levels. The inhibitory effects of dexamethasone on the morning levels of IGFBP-1 can be explained by attendant hyperinsulinemia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0026-0495(91)90092-bDOI Listing

Publication Analysis

Top Keywords

levels igfbp-1
16
+/- micrograms/l
16
insulin levels
12
insulin
11
levels
9
insulin-like growth
8
growth factor
8
factor binding
8
binding protein-1
8
high insulin
8

Similar Publications

Matrix metalloproteinases (MMPs) are M2 macrophage markers that are modulated by inflammation. A disintegrin and metalloproteinases (ADAMS) and those with thrombospondin motifs (ADAMTS) regulate the shedding of membrane-bound proteins, growth factors, cytokines, ligands, and receptors; MMPs, ADAMS, and ADAMTS may be regulated by tissue inhibitors of metalloproteinases (TIMPs). This study aimed to determine whether these interacting proteins were dysregulated in PCOS.

View Article and Find Full Text PDF

T2DM detection methods are commonly used in teens and adults but are generally unsuitable to unborn fetuses in the context of non-invasive prenatal testing (NIPT). Biophysical and biochemical tests for fetuses are often invasive, carry risks, and have low sensitivity and specificity, with no direct method available to diagnose T2DM in utero. In contrast, cell-free DNA (cfDNA) is known have high sensitivity (93-98 %) and specificity (94-100 %) for cancer detection and fetal genetic disorders (trisomy 21, 8, and 13) making it applicable for fetal epigenetic and genetic analysis, including T2DM early detection.

View Article and Find Full Text PDF

Growth hormone (GH) is the key regulator of insulin-like growth factor I (IGF-I) generation in healthy states. However, portal insulin delivery is also an essential co-player in the regulation of the GH/IGF-I axis by affecting and regulating hepatic GH receptor synthesis, and subsequently altering hepatic GH sensitivity and IGF-I generation. Disease states of GH excess (e.

View Article and Find Full Text PDF

Background: Previous researches on the effect of low-fat diet (LF) on insulin-like growth factor-1 (IGF-1), and its binding proteins (IGFBPs) did not reach a consensus result, and there is no study summarizing these findings. Thus, this systematic review and meta-analysis of randomized control trials (RCTs) was performed to pool available evidence and answer the question whether dietary fat can affect IGF-1 and IGFBPs or not.

Methods: PubMed, Scopus, ISI Web of Science, Google, Google scholar, ProQuest, and the Cochrane Library were searched without language restrictions until July 2, 2024 to retrieve related studies.

View Article and Find Full Text PDF

The pathogenic mechanisms of severe aplastic anemia (SAA) in children are not completely elucidated. The insufficiency of the bone marrow microenvironment, in which mesenchymal stem cells (MSCs) are an important element, can be a potential factor associated with hematopoietic impairment in SAA. In the present study, we compared bone marrow MSCs from five children with SAA and five controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!