Reward-related neuronal activity in the rat superior colliculus.

Behav Brain Res

Department of Psychology, Hamilton College, Clinton, NY 13323, United States.

Published: February 2007

The activity of single units in the intermediate and deep layers of the superior colliculus was recorded while rats performed an operant conditioning task. On all trials, each animal pressed a bar and then inserted his snout into a food cup; on half of the trials, food reinforcement was available. To test for tactile sensitivity, on half of the trials the rats received a puff of air to the face when the snout entered the food cup. Activity of most cells was correlated with the motor activity of inserting the snout into the food cup, even when reinforcement was not available. For many cells, a larger burst of activity was seen on the reinforced trials than on trials when rats made the same movements without the presence of reward. There was no evidence that an increase in tactile sensitivity occurred when the animal retrieved the reinforcement. These results suggest that cells in the superior colliculus have an increase in activity associated with reward retrieval, which for some neurons is not dependent on simple sensory or motor factors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2006.11.004DOI Listing

Publication Analysis

Top Keywords

superior colliculus
12
food cup
12
snout food
8
half trials
8
tactile sensitivity
8
trials rats
8
reinforcement cells
8
activity
6
trials
5
reward-related neuronal
4

Similar Publications

Sepsis is a state of systemic immune dysregulation and organ failure that is frequently associated with severe brain disability. Epidemiological studies have indicated that younger females have better prognosis and clinical outcomes relative to males, though the sex-dependent response of the brain to sepsis during post-sepsis recovery remains largely uncharacterized. Using a modified polymicrobial intra-abdominal murine model of surgical sepsis, we characterized the acute effects of intra-abdominal sepsis on peripheral inflammation, brain inflammation and brain functional connectivity in young adult mice of both sexes.

View Article and Find Full Text PDF

Background: Affective cognition and emotion processing is impaired in amnestic Alzheimer's disease (AD), although less is known about atypical (AT) variants such as logopenic variant primary progressive aphasia (lvPPA) and posterior cortical atrophy (PCA). The affective blindsight pathway bypasses V1 via the superior colliculus-pulvinar route to activate the amygdala in cases of occipital lesioning and may explain maintenance of emotion identification and visual information processing in non-amnestic AD despite atrophy in visuospatial regions. We sought to characterize functional connectivity from key regions along the affective blindsight pathway in a clinically heterogeneous AD cohort.

View Article and Find Full Text PDF

A collicular map for touch-guided tongue control.

Nature

January 2025

Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.

Accurate goal-directed behaviour requires the sense of touch to be integrated with information about body position and ongoing motion. Behaviours such as chewing, swallowing and speech critically depend on precise tactile events on a rapidly moving tongue, but neural circuits for dynamic touch-guided tongue control are unknown. Here, using high-speed videography, we examined three-dimensional lingual kinematics as mice drank from a water spout that unexpectedly changed position during licking, requiring re-aiming in response to subtle contact events on the left, centre or right surface of the tongue.

View Article and Find Full Text PDF

Prepulse inhibition (PPI) refers to the phenomenon in which a weak sensory stimulus before a strong one significantly reduces the startle reflex caused by the strong stimulus. Perceptual spatial separation, a phenomenon where auditory cues from the prepulse and background noise are distinguished in space, has been shown to enhance PPI. This study aims to investigate the neural modulation mechanisms of PPI by the spatial separation between the prepulse stimulus and background noise, particularly in the deep superior colliculus (deepSC).

View Article and Find Full Text PDF

The superior colliculus directs goal-oriented forelimb movements.

Cell Rep

December 2024

Centre for Neuroscience, Indian Institute of Science, Bengaluru, Karnataka 560012, India. Electronic address:

Skilled forelimb control is essential for daily living, yet our understanding of its neural mechanisms, although extensive, remains incomplete. Here, we present evidence that the superior colliculus (SC), a major midbrain structure, is necessary for accurate forelimb reaching in mice. We found that neurons in the lateral SC are active during goal-directed reaching, and by employing chemogenetic and phase-specific optogenetic silencing of these neurons, we show that the SC causally facilitates reach accuracy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!