The vitamin K-dependent carboxylase is an integral membrane protein which is required for the post-translational modification of a variety of vitamin K-dependent proteins. Previous studies have suggested carboxylase is a glycoprotein with N-linked glycosylation sites. In this study, we identify the N-glycosylation sites of carboxylase by mass spectrometric peptide mapping analyses combined with site-directed mutagenesis. Our mass spectrometric results show that the N-linked glycosylation in carboxylase occurs at positions N459, N550, N605, and N627. Eliminating these glycosylation sites by changing asparagine to glutamine caused the mutant carboxylase to migrate faster on SDS-PAGE gels, adding further evidence that these sites are glycosylated. In addition, the mutation studies identified N525, a site that cannot be recovered by mass spectroscopy analysis, as a glycosylation site. Furthermore, the potential glycosylation site at N570 is glycosylated only if all five natural glycosylation sites are simultaneously mutated. Removal of the oligosaccharides by glycosidase from wild-type carboxylase or by elimination of the functional glycosylation sites by site-directed mutagenesis did not affect either the carboxylation or epoxidation activity when the small FLEEL pentapeptide was used as a substrate, suggesting that N-linked glycosylation is not required for the enzymatic function of carboxylase. In contrast, when site N570 and the five natural glycosylation sites were mutated simultaneously, the resulting carboxylase protein was degraded. Our results suggest that N-linked glycosylation is not essential for carboxylase enzymatic activity but is important for protein folding and stability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3956053 | PMC |
http://dx.doi.org/10.1021/bi0618518 | DOI Listing |
Int J Biol Macromol
January 2025
Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India. Electronic address:
Phanerochaete chrysosporium (Pc), is a prominent lignin-degrading fungus which serves as an important source for lignin-degrading enzymes (LDEs). The present study was focused on a detailed in silico analysis and gene expression patterns of lignin peroxidases (PcLiPs), which is a significant class of LDEs. In spite of extensive research on P.
View Article and Find Full Text PDFFront Cell Dev Biol
December 2024
Department of International Medical Department, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
Non-small cell lung cancer (NSCLC) is the main histological subtype of lung cancer. For locally advanced and advanced NSCLC, epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI)-targeted therapy has been the first choice for NSCLC patients with EGFR mutations. TKIs, as targeted drugs, inhibit kinase activity and autophosphorylation by competitively binding to the ATP binding site of the EGFR tyrosine kinase domain, which blocks the signal transduction mediated by EGFR and thus inhibits the proliferation of tumor cells.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan.
Prior to mass spectrometry (MS) analysis, pretreatment of low-abundance glycopeptides is vital for identifying protein glycosylation. In this study, we fabricated an environmentally friendly citric-acid-modified cellulose monolith (CCM) characterized by a coral-like porous structure and high-density hydrophilic groups using a thermally induced phase separation (TIPS) method. The CCM production leverages biomass resources, specifically cellulose and citric acid, utilizing TIPS to synthesize continuous porous materials through a straightforward heating and cooling process of polymer solutions.
View Article and Find Full Text PDFViruses
November 2024
Laboratory for Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium.
Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory tract infections in young children, elderly and immunocompromised patients worldwide. The RSV fusion (F) protein, which has 5-6 N-glycosylation sites depending on the strain, is a major target for vaccine development. Two to three of these sites are located in the p27 peptide, which is considered absent in virions.
View Article and Find Full Text PDFThe apolipoprotein E ( ) ε4 allele is the strongest genetic risk factor for Alzheimer's disease (AD). ApoE is glycosylated with an O-linked Core-1 sialylated glycan at several sites, yet the impact and function of this glycosylation on AD biomarkers remains unclear. We examined apoE glycosylation in a cohort of cerebrospinal fluid (CSF, n=181) and plasma (n= 178) samples from the Alzheimer's Disease Neuroimaging Initiative (ADNI) stratified into 4 groups: cognitively normal (CN), Mild Cognitive Impairment (MCI), progressors and non-progressors based on delayed word recall performance over 4 years.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!