The mammalian U3 snRNP is one member of a recently described family of nucleolar snRNPs which also includes U8, U13, U14, X and Y. All of these snRNPs are immunoprecipitable by anti-fibrillarin autoantibodies, suggesting the existence of a common binding site for the 34 kDa fibrillarin (Fb) protein. Two short nucleotide sequences, called Boxes C and D, present in each of these RNAs are the most likely sites for fibrillarin binding. We have developed a HeLa in vitro assembly system for binding of fibrillarin to human U3 snRNA. Reconstitution of the input RNA is specific in our assay since four of the other nucleolar small RNAs (U8, U13, X and Y) which have Boxes C and D become immunoprecipitable by anti-fibrillarin whereas two RNAs which lack these sequences (5S and 5.8S) do not. Deletion analyses of the U3 snRNA demonstrate that the presence of Box C but not Box D is required for fibrillarin binding. Moreover, seven single or double site-specific mutations in the U3 Box C abolish binding. The role of the Box C-fibrillarin interaction in the biogenesis of the Fb snRNPs is discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC452965 | PMC |
http://dx.doi.org/10.1002/j.1460-2075.1991.tb07807.x | DOI Listing |
Mol Cell
December 2024
MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China. Electronic address:
Virology
January 2025
Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO, 64110, USA. Electronic address:
Viral proteins with intrinsic disorder, such as the p26 movement protein from Pea enation mosaic virus 2 (PEMV2), can phase separate and form condensates that aid specific stages of virus replication. However, little is known about the impact of viral condensate formation on essential cellular processes, like translation. In this study, we performed mass spectrometry on affinity-purified p26 condensates and found an enrichment of RNA-binding proteins involved in translation and ribosome biogenesis.
View Article and Find Full Text PDFCancer Lett
October 2024
Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China. Electronic address:
DNA- and RNA-binding proteins (DRBPs) are versatile proteins capable of binding to both DNA and RNA molecules. In this study, we identified fibrillarin (FBL) as a key DRBP that is upregulated in liver cancer tissues vs. normal tissues and is correlated with patient prognosis.
View Article and Find Full Text PDFCell Rep
July 2024
Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. Electronic address:
Glycine- and arginine-rich (GAR) motifs, commonly found in RNA-binding and -processing proteins, can be symmetrically (SDMA) or asymmetrically (ADMA) dimethylated at the arginine residue by protein arginine methyltransferases. Arginine-methylated protein motifs are usually read by Tudor domain-containing proteins. Here, using a GFP-Trap, we identify a non-Tudor domain protein, squamous cell carcinoma antigen recognized by T cells 3 (SART3), as a reader for SDMA-marked GAR motifs.
View Article and Find Full Text PDFCancer Res
September 2024
Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York.
Dysregulated biomolecular condensates, formed through multivalent interactions among proteins and nucleic acids, have been recently identified to drive tumorigenesis. In acute myeloid leukemia (AML), condensates driven by RNA-binding proteins alter transcriptional networks. Yang and colleagues performed a CRISPR screen and identified fibrillarin (FBL) as a new driver in AML leukemogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!