Aquaporin-4 (AQP4) has recently been implicated in the pathogenesis of neuromyelitis optica (NMO) where it has been identified as the first defined autoantigen pertinent to an inflammatory demyelinating disorder of the human CNS. Furthermore, a recent case report has shown a lack of AQP4 expression in the spinal cord lesions of NMO. However, the pattern of AQP4 expression in multiple sclerosis (MS) tissues has not been well-defined. In the present investigation we have confirmed a lack of expression of AQP4 in optic and spinal cord lesions in NMO which contrasted sharply with the increased levels of AQP4 expression seen in MS lesions. Furthermore a detailed immunohistochemical and semi-quantitative analysis is used to describe the expression pattern of AQP4 on well-characterized tissue microarray samples of MS and control white matter. Anatomically AQP4 was more highly expressed in all categories of MS tissue compared to normal control tissues with the most abundant expression in active lesions. Within active lesions AQP4 expression was significantly correlated with expression of the pro-inflammatory cytokine osteopontin. At the cellular level dual-labeling immunofluoresence demonstrated that increased expression of AQP4 was most pronounced at the astrocytic endfeet but was also associated with the cell bodies of astrocytes in the tissue parenchyma. The finding of increased AQP4 expression in MS lesions in contrast to the lack of expression in NMO lesions may suggest different mechanisms of initiation and progression between the two disease states.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00401-006-0169-2DOI Listing

Publication Analysis

Top Keywords

aqp4 expression
20
expression
13
expression lesions
12
aqp4
10
lesions
9
neuromyelitis optica
8
increased expression
8
expression multiple
8
multiple sclerosis
8
white matter
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!