The dual expression system for the suppression and clearance of insulin has not been previously used to produce transgenic mice for diabetes-related disease. The aim of this study was to produce new transgenic mice coexpressing specific insulin small interfering RNA (siRNA) sequences and the human insulin degrading enzyme (hIDE) gene in order to examine the diabetes-like phenotype. To achieve this, a new lineage of transgenic mice was produced by the microinjection of the dual expression constructs (pH1/siRNAinsulin-CMV/hIDE) into mouse fertilized eggs. The results showed that overexpressing the insulin siRNA and hIDE genes resulted in the induction of the human enzyme, impaired glucose tolerance and lower serum insulin levels compared to the Non-Tg mice. Moreover, the Tg mice aged 20 weeks had a significantly activated ER stress signaling compared to their Non-Tg counterparts, which may be associated with the suppression of insulin production in the pancreas and the degradation of insulin in the liver, respectively. Therefore, insulin-suppressed transgenic mice can be used to examine diabetes as a new diabetes-like phenotype model, which results in a lower level of circulating insulin without the destruction of pancreatic islets.

Download full-text PDF

Source

Publication Analysis

Top Keywords

transgenic mice
20
insulin production
8
glucose tolerance
8
stress signaling
8
mice coexpressing
8
dual expression
8
insulin
8
produce transgenic
8
diabetes-like phenotype
8
compared non-tg
8

Similar Publications

People living with HIV (PLWH) experience HIV-associated neurocognitive disorders (HAND), even though combination antiretroviral therapy (cART) suppresses HIV replication. HIV-1 transactivator of transcription (HIV-1 Tat) contributes to the development of HAND through neuroinflammatory and neurotoxic mechanisms. C-C chemokine 5 receptor (CCR5) is important in immune cell targeting and is a co-receptor for HIV viral entry into CD4+ cells.

View Article and Find Full Text PDF

Background And Aims: Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterised by progressive biliary inflammation and fibrosis, leading to liver cirrhosis and cholangiocarcinoma. GPBAR1 (TGR5) is a G protein-coupled receptor for secondary bile acids. In this study, we have examined the therapeutic potential of BAR501, a selective GPBAR1 agonist in a PSC model.

View Article and Find Full Text PDF

Tumor-promoting inflammation significantly impacts cancer progression, and targeting inflammatory cytokines has emerged as a promising therapeutic approach in clinical trials. Interleukin (IL)-1α, a member of the IL-1 cytokine family, plays a crucial role in both inflammation and carcinogenesis. How IL-1α is secreted in the tumor microenvironment has been poorly understood, and we previously showed that calpain 1 cleaves pro-IL-1α for mature IL-1α secretion, which exacerbates hepatocellular carcinoma by recruiting myeloid-derived suppressor cells.

View Article and Find Full Text PDF

Aim: Despite dysfunctional vasoactive intestinal polypeptide-positive interneurons (VIP-INs) being linked to the emergence of neurodevelopmental disorders, the temporal profile of VIP-IN functional maturation and cortical network integration remains unclear.

Methods: Postnatal VIP-IN development was traced with patch clamp experiments in the somatosensory cortex of Vip-IRES-cre x tdTomato mice. Age groups were chosen during barrel field formation, before and after activation of main sensory inputs, and in adult animals (postnatal days (P) P3-4, P8-10, P14-16, and P30-36).

View Article and Find Full Text PDF

Genetic medicines, including CRISPR/Cas technologies, extend tremendous promise for addressing unmet medical need in inherited retinal disorders and other indications; however, there remain challenges for the development of therapeutics. Herein, we evaluate genome editing by engineered Cas9 ribonucleoproteins (eRNP) in vivo via subretinal administration using mouse and pig animal models. Subretinal administration of adenine base editor and double strand break-inducing Cas9 nuclease eRNPs mediate genome editing in both species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!