Thrombopoietic cells may differentially promote or inhibit tissue vascularization by releasing both pro- and antiangiogenic factors. However, the molecular determinants controlling the angiogenic phenotype of thrombopoietic cells remain unknown. Here, we show that expression and release of thrombospondins (TSPs) by megakaryocytes and platelets function as a major antiangiogenic switch. TSPs inhibited thrombopoiesis, diminished bone marrow microvascular reconstruction following myelosuppression, and limited the extent of revascularization in a model of hind limb ischemia. We demonstrate that thrombopoietic recovery following myelosuppression was significantly enhanced in mice deficient in both TSP1 and TSP2 (TSP-DKO mice) in comparison with WT mice. Megakaryocyte and platelet levels in TSP-DKO mice were rapidly restored, thereby accelerating revascularization of myelosuppressed bone marrow and ischemic hind limbs. In addition, thrombopoietic cells derived from TSP-DKO mice were more effective in supporting neoangiogenesis in Matrigel plugs. The proangiogenic activity of TSP-DKO thrombopoietic cells was mediated through activation of MMP-9 and enhanced release of stromal cell-derived factor 1. Thus, TSP-deficient thrombopoietic cells function as proangiogenic agents, accelerating hemangiogenesis within the marrow and revascularization of ischemic hind limbs. As such, interference with the release of cellular stores of TSPs may be clinically effective in augmenting neoangiogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1679710PMC
http://dx.doi.org/10.1172/JCI29314DOI Listing

Publication Analysis

Top Keywords

thrombopoietic cells
24
tsp-dko mice
12
extent revascularization
8
bone marrow
8
ischemic hind
8
hind limbs
8
thrombopoietic
7
cells
6
mice
5
thrombospondins deployed
4

Similar Publications

Achieving bone union remains a significant clinical dilemma. The use of osteoinductive agents, specifically bone morphogenetic proteins (BMPs), has gained wide attention. However, multiple side effects, including increased incidence of cancer, have renewed interest in investigating alternatives that provide safer, yet effective bone regeneration.

View Article and Find Full Text PDF

Chlorogenic acid compounds from sweetpotato ( L.) leaves facilitate megakaryocyte differentiation and thrombocytopoiesis PI3K/AKT pathway.

Front Pharmacol

August 2024

Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China.

Idiopathic thrombocytopenic purpura (ITP) is an autoimmune disorder characterized by antiplatelet autoantibodies, thrombocytopenia, and bleeding, however, its treatment options are limited. In this study, a kind of active component, chlorogenic acid compounds (CGAs) from sweetpotato leaves was extracted out to explore its medicinal value and provide novel therapeutic strategies for the treatment of ITP. CGAs was isolated by ionic liquids-ultrasound (IL-UAE), which contains six isomers of chlorogenic acid with total purity of 95.

View Article and Find Full Text PDF

Modelling Takenouchi-Kosaki syndrome using disease-specific iPSCs.

Stem Cell Res

December 2023

Department of Molecular Medicine, Research Institute, Osaka Women's and Children's Hospital, 840 Murodo-cho, Izumi, Osaka 594-1101, Japan. Electronic address:

Takenouchi-Kosaki Syndrome (TKS) is a congenital multi-organ disorder caused by the de novo missense mutation c.191A > G p. Tyr64Cys (Y64C) in the CDC42 gene.

View Article and Find Full Text PDF

Platelets are generated by specialized cells called megakaryocytes (MKs). However, MK's origin and platelet release mode have remained incompletely understood. Here, we established direct visualization of embryonic thrombopoiesis in vivo by combining multiphoton intravital microscopy (MP-IVM) with a fluorescence switch reporter mouse model under control of the platelet factor 4 promoter ().

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!