Tissue reoxygenation following hypoxia is associated with ischemia-reperfusion injury (IRI) and may signal the development of ischemic preconditioning, an adaptive state that is protective against subsequent IRI. Here we used microarray RNA analysis of in vivo and in vitro models of IRI to delineate the underlying molecular mechanisms. Microarray analysis of renal tissue after ischemia-reperfusion revealed a number of highly up-regulated antioxidant genes including aldehyde dehydrogenases (ALDH1A1 and ALDH1A7), glutathione S-transferases (GSTM5, GSTA2 and GSTP1), and NAD(P)H quinone oxidoreductase (NQO1). The transcription factor NF-E2-related factor-2 (Nrf2), a master regulator of this antioxidant response, is also elevated in IRI. Furthermore, microarray analysis of renal epithelial cells exposed to hypoxia/reoxygenation identified Nrf2 to be up-regulated on reoxygenation. We also reveal a reoxygenation-specific nuclear accumulation of Nrf2 protein and subsequent activation of a NQO1 promoter reporter construct. Attenuating reactive oxygen species (ROS) in reoxygenation using the antioxidant N-acetyl cysteine results in inhibition of Nrf-2 activation. mRNA levels for Nrf2-dependent genes were detected in human liver biopsy 1 h after transplantation. These results indicate that reoxygenation-dependent Nrf-2 activity facilitates ischemic preconditioning through the induction of antioxidant gene expression and that ROS may be critical in signaling this event.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.06-5097fjeDOI Listing

Publication Analysis

Top Keywords

transcription factor
8
gene expression
8
ischemia-reperfusion injury
8
ischemic preconditioning
8
iri microarray
8
microarray analysis
8
analysis renal
8
antioxidant
5
reoxygenation-specific activation
4
activation antioxidant
4

Similar Publications

Lotus japonicus-ROOT HAIR LESS1-LIKE1 (LRL1) of Arabidopsis thaliana encodes a basic helix-loop-helix (bHLH) transcription factor (TF) involved in root hair development. Root hair development is regulated by an elaborate transcriptional network, in which GLABRA2 (GL2), a key negative regulator, directly represses bHLH TF genes, including LRL1 and ROOT HAIR DEFECTIVE6 (RHD6). Although RHD6 and its paralogous TFs have been shown to connect downstream to genes involved in cell morphological events such as endomembrane and cell wall modification, the network downstream of LRL1 remains elusive.

View Article and Find Full Text PDF

Essential Thrombocythemia: A Review.

JAMA

January 2025

CRIMM, Center Research and Innovation of Myeloproliferative Neoplasms, University of Florence, AOU Careggi, Florence, Italy.

Importance: Essential thrombocythemia, a clonal myeloproliferative neoplasm with excessive platelet production, is associated with an increased risk of thrombosis and bleeding. The annual incidence rate of essential thrombocythemia in the US is 1.5/100 000 persons.

View Article and Find Full Text PDF

Glioprotective Effects of Resveratrol Against Glutamate-Induced Cellular Dysfunction: The Role of Heme Oxygenase 1 Pathway.

Neurotox Res

January 2025

Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.

Resveratrol, a natural polyphenol, has shown promising neuroprotective effects in several in vivo and in vitro experimental models. However, the mechanisms by which resveratrol mediates these effects are not fully understood. Glutamate is the major excitatory neurotransmitter in the brain; however, excessive extracellular glutamate levels can affect neural activity in several neurological diseases.

View Article and Find Full Text PDF

This research seeks to address the gap in past studies by examining the role of the Nrf2 (nuclear factor erythroid 2-related factor 2) and HO-1 (heme oxygenase-1) signaling pathways in hypoxia and the potential effects of alpha-pinene on these factors. Wistar rats were divided into 7 experimental groups (n = 7): 1) control, 2 and 3) groups receiving alpha-pinene 5 and 10 mg/kg (i.p.

View Article and Find Full Text PDF

Melatonin increases Pb tolerance in P. ovata seedlings via the regulation of growth and stress-related phytohormones, ROS scavenging and genes responsible for melatonin synthesis, metal chelation, and stress defense. Lead (Pb) is a highly toxic heavy metal that accumulates in plants through soil and air contamination and impairs its plant growth and development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!