Lunatic fringe controls T cell differentiation through modulating notch signaling.

J Immunol

Department of Immunology and Parasitology, Institute of Health Biosciences, University of Tokushima Graduate School, 3-18-15 Kuramoto, Tokushima 770-8503, Japan.

Published: December 2006

T cells differentiate from bone marrow-derived stem cells by expressing developmental stage-specific genes. We here searched arrays of genes that are highly expressed in mature CD4-CD8+ (CD8 single-positive (SP)) T cells but little in CD4+CD8+ (double-positive (DP)) cells by cDNA subtraction. Lunatic fringe (Lfng), a modulator of Notch signaling, was identified to be little expressed in DP cells and highly expressed in CD8SP T cell as well as in CD4-CD8- (double-negative (DN)) and mature CD4+CD8- (CD4SP) T cells. Thus, we examined whether such change of expression of Lfng plays a role in T cell development. We found that overexpression of Lfng in Jurkat T cells strengthened Notch signaling by reporter gene assay, indicating that Lfng is a positive regulator for Notch signaling in T cells. The enforced expression of Lfng in thymocytes enhanced the development of immature CD8SP cells but decreased mature CD4SP and CD8SP cells. In contrast, the down-regulation of Lfng in thymocytes suppressed DP cells development due to the defective transition from CD44+CD25- stage to subsequent stage in DN cells. The overexpression of Lfng in fetal liver-derived hemopoietic stem cells enhanced T cell development, whereas its down-regulation suppressed it. These results suggested that the physiological high expression of Lfng in DN cells contributes to enhance T cell differentiation through strengthening Notch signaling. Shutting down the expression of Lfng in DP cells may have a physiological role in promoting DP cells differentiation toward mature SP cells.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.177.12.8365DOI Listing

Publication Analysis

Top Keywords

notch signaling
20
cells
17
expression lfng
16
lfng
9
lunatic fringe
8
cell differentiation
8
signaling cells
8
stem cells
8
highly expressed
8
cell development
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!