In animal cells, many proteins have been shown to undergo glutathionylation under conditions of oxidative stress. By contrast, very little is known about this post-translational modification in plants. In the present work, we showed, using mass spectrometry, that the recombinant chloroplast A(4)-glyceraldehyde-3-phosphate dehydrogenase (A(4)-GAPDH) from Arabidopsis thaliana is glutathionylated with either oxidized glutathione or reduced glutathione and H(2)O(2). The formation of a mixed disulfide between glutathione and A(4)-GAPDH resulted in the inhibition of enzyme activity. A(4)-GAPDH was also inhibited by oxidants such as H(2)O(2). However, the effect of glutathionylation was reversed by reductants, whereas oxidation resulted in irreversible enzyme inactivation. On the other hand, the major isoform of photosynthetic GAPDH of higher plants (i.e. the A(n)B(n)-GAPDH isozyme in either A(2)B(2) or A(8)B(8) conformation) was sensitive to oxidants but did not seem to undergo glutathionylation significantly. GAPDH catalysis is based on Cys149 forming a covalent intermediate with the substrate 1,3-bisphosphoglycerate. In the presence of 1,3-bisphosphoglycerate, A(4)-GAPDH was fully protected from either oxidation or glutathionylation. Site-directed mutagenesis of Cys153, the only cysteine located in close proximity to the GAPDH active-site Cys149, did not affect enzyme inhibition by glutathionylation or oxidation. Catalytic Cys149 is thus suggested to be the target of both glutathionylation and thiol oxidation. Glutathionylation could be an important mechanism of regulation and protection of chloroplast A(4)-GAPDH from irreversible oxidation under stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1742-4658.2006.05577.x | DOI Listing |
Molecules
January 2025
Unité de Brasserie et des Industries Alimentaires, Louvain Institute of Biomolecular Science and Technology (LIBST), Faculté des Bioingénieurs, Université Catholique de Louvain, Croix du Sud, 2 Box L7.05.07, 1348 Louvain-la-Neuve, Belgium.
The prevalence of glutathionylated (G-) precursors of polyfunctional thiols (PFTs) over their free forms has prompted investigating how to optimize the enzymatic breakdown of these precursors with yeast during lager, ale, and non-alcoholic/low-alcoholic beer (NABLAB) fermentation trials. Some yeasts have been selected for their higher β-lyase activity on the cysteinylated (Cys-) conjugates (up to 0.54% for SafAle K-97), yet some strains and one maltose-negative var.
View Article and Find Full Text PDFFront Pediatr
January 2025
Department of Neonatology, Children's Medical Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
Bronchopulmonary dysplasia is a prevalent respiratory disorder posing a significant threat to the quality of life in premature infants. Its pathogenesis is intricate, and therapeutic options are limited. Besides genetic coding, protein post-translational modification plays a pivotal role in regulating cellular function, contributing complexity and diversity to substrate proteins and influencing various cellular processes.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Plant Molecular Biology and Physiology, Albrecht-von-Haller Institute for Plant Sciences, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany.
Class I glutaredoxins (GRXs) are nearly ubiquitous proteins that catalyse the glutathione (GSH)-dependent reduction of mainly glutathionylated substrates. In land plants, a third class of GRXs has evolved (class III). Class III GRXs regulate the activity of TGA transcription factors through yet unexplored mechanisms.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
January 2025
Ion Channel Biology Laboratory, AU-KBC Research Centre, Madras Institute of Technology Campus, Anna University, Chrompet, Chennai 600 044, Tamil Nadu, India. Electronic address:
Metabolic dysfunction-associated steatotic liver disease [MASLD] is a pervasive multifactorial health burden. Post-translational modifications [PTMs] of amino acid residues in protein domains demonstrate pivotal roles for imparting dynamic alterations in the cellular micro milieu. The crux of identifying novel druggable targets relies on comprehensively studying the etiology of metabolic disorders.
View Article and Find Full Text PDFActa Parasitol
January 2025
Edificio D, Facultad de Ciencias Químicas, LADISER Inmunología y Biología Molecular, Universidad Veracruzana, Orizaba, Veracruz, México.
Despite being the most relevant and critical option for managing Chagas disease, pharmacological therapy is currently limited by the availability of only two drugs, benznidazole and nifurtimox. Their effectiveness is further restricted in the chronic phase of the infection, as they induce severe side effects and require prolonged treatment. Additionally, the use of these drugs can lead to the emergence of substantial resistance problems, compounded by the potential natural resistance of some parasite isolates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!