Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The water exchange process on fac-[(CO)3Mn(H2O)3]+ and fac-[(CO)3Tc(H2O)3]+ was kinetically investigated by 17O NMR as a function of the acidity, temperature, and pressure. Up to pH 6.3 and 4.4, respectively, the exchange rate is not affected by the acidity, thus demonstrating that the contribution of the monohydroxo species fac-[(CO)3M(OH)(H2O)2] is not significant, which correlates well with a higher pKa for these complexes compared to the homologue fac-[(CO)3Re(H2O)3]+ complex. The water exchange rate K298ex/s(-1) (DeltaHex double dagger/kJ mol(-1); DeltaSex double dagger/J mol(-1) K(-1); DeltaV double dagger/cm3 mol-1) decreases down group 7 from Mn to Tc and Re: 23 (72.5; +24.4; +7.1) > 0.49 (78.3; +11.7; +3.8) > 5.4 x 10(-3) (90.3; +14.5; -). For the Mn complex only, an O exchange on the carbonyl ligand could be measured (K338co = 4.3 x 10(-6) s(-1)), which is several orders of magnitude slower than the water exchange. In the case of the Tc complex, the coupling between 17O (I = 5/2) and 99Tc (I = 9/2) nuclear spins has been observed (1J99Tc,17O = 80 +/- 5 Hz). The substitution of water in fac-[(CO)3M(H2O)3]+ by dimethyl sulfide (DMS) is slightly faster than that by CH3CN: 3 times faster for Mn, 1.5 times faster for Tc, and 1.2 times faster for Re. The pressure dependence behavior is different for Mn and Re. For Mn, the change in volume to reach the transition state is always clearly positive (water exchange, CH3CN, DMS), indicating an Id mechanism. In the case of Re, an Id/Ia changeover is assigned on the basis of reaction profiles with a strong volume maximum for pyrazine and a minimum for DMS as the entering ligand.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic061578y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!