Computational study of iron(II) and -(III) complexes with a simple model human H ferritin ferroxidase center.

Inorg Chem

Department of Sciences and Technology, Universidad Metropolitana, San Juan, Puerto Rico 00928-1150.

Published: December 2006

Interaction of iron ions with a six-amino acid model of the ferroxidase center of human H chain ferritin has been examined in density functional theory calculations. The model, based on experimental studies of oxidation of Fe2+ at the center, consists of Glu27, Glu62, His65, Glu107, Gln141, and Ala144. Reasonable structures are obtained in a survey of types of iron complexes inferred to occur in the ferroxidase reaction. Structures of complexes of the model center with one and two Fe2+ ions, with diiron(III) bridged by peroxide and bridged by oxide-peroxide combinations, have been optimized. Calculations on diiron(III) complexes confirm that stable peroxide-bridged complexes can form and that the Fe-Fe distance in at least one is consistent with the experimental Fe-Fe distance observed in the blue peroxodiferric complex of ferritin.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic060388kDOI Listing

Publication Analysis

Top Keywords

ferroxidase center
8
fe-fe distance
8
complexes
5
computational study
4
study ironii
4
ironii -iii
4
-iii complexes
4
complexes simple
4
model
4
simple model
4

Similar Publications

Iron and Copper Liver Concentrations in Wilson Disease.

J Gastrointestin Liver Dis

December 2024

Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.

Background And Aims: Wilson disease (WD) results in the defective incorporation of copper into ceruloplasmin as well as decreased biliary copper excretion. Secondary iron overload has also been associated with WD; however, the prevalence is currently unknown. This study aims to determine the prevalence of potential secondary iron overload in patients suspected to have WD.

View Article and Find Full Text PDF

Objective: This study investigated copper (Cu) status in relation to abdominal obesity indices and liver function in patients with non-alcoholic fatty liver disease (NAFLD). This case-control study was carried out on 80 overweight/obese patients with NAFLD and 80 apparently healthy age, sex, and body mass index (BMI)-matched controls. A validated and reliable 168-item semi-quantitative food frequency questionnaire was completed for each subject and fasting serum levels of liver aminotransferases, ferritin, Cu and ceruloplasmin were assessed.

View Article and Find Full Text PDF

This experiment evaluated the effects of bovine appeasing substance (BAS) administration at feedlot entry on growth, temperament, inflammation, response to vaccination, behavior, carcass characteristics, and meat quality of beef heifers. Thirty heifers were weaned and assigned to (d 0): (1) BAS (n = 15; SecureCattle; IRSEA Group) or (2) Saline (n = 15). On d 0, heifers were also vaccinated against respiratory diseases and slaughtered on d 150.

View Article and Find Full Text PDF

Population-based biobanks enable genomic screening to support initiatives that prevent disease onset or slow its progression and to estimate the prevalence of genetic diseases in the population. Wilson's disease (WD) is a rare genetic copper-accumulation disorder for which timely intervention is crucial, as treatment is readily available. We studied WD in the Estonian Biobank population to advance patient screening, swift diagnosis, and subsequent treatment.

View Article and Find Full Text PDF

Copper homeostasis and neurodegenerative diseases.

Neural Regen Res

November 2025

International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Ministry of Education, Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou Province, China.

Copper, one of the most prolific transition metals in the body, is required for normal brain physiological activity and allows various functions to work normally through its range of concentrations. Copper homeostasis is meticulously maintained through a complex network of copper-dependent proteins, including copper transporters (CTR1 and CTR2), the two copper ion transporters the Cu -transporting ATPase 1 (ATP7A) and Cu-transporting beta (ATP7B), and the three copper chaperones ATOX1, CCS, and COX17. Disruptions in copper homeostasis can lead to either the deficiency or accumulation of copper in brain tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!