Unlabelled: PET offers a noninvasive means to assess neoplasms, in view of its sensitivity and accuracy in staging tumors and potentially in monitoring treatment response. The aim of this study was to evaluate newly diagnosed non-small cell lung cancer (NSCLC) for the presence of hypoxia, as indicated by the uptake of (18)F-Fluoromisonidazole ((18)F-FMISO), and to examine the relationship of hypoxia to the uptake of (18)F-FDG, microvessel density, and other molecular markers of hypoxia.
Methods: Twenty-one patients with suspected or biopsy-proven NSCLC were enrolled prospectively in this study. All patients had PET studies with (18)F-FMISO and (18)F-FDG. Seventeen patients subsequently underwent surgery, with analysis performed for tumor markers of angiogenesis and hypoxia.
Results: In the 17 patients with resectable NSCLC (13 men, 4 women; age range, 51-77 y), the mean (18)F-FMISO uptake in tumor was significantly lower than that of (18)F-FDG uptake (P < 0.0001) and showed no correlation with (18)F-FDG uptake (r = 0.26). The mean (95% confidence interval [CI]) (18)F-FMISO SUV(max) (maximum standardized uptake value) was 1.20 [0.95-1.45] compared with the mean [95% CI] (18)F-FDG SUV(max) of 5.99 [4.62-7.35]. The correlation between (18)F-FMISO uptake, (18)F-FDG uptake, and tumor markers of hypoxia and angiogenesis was poor. A weakly positive correlation between (18)F-FMISO and (18)F-FDG uptake and Ki67 was found.
Conclusion: The hypoxic cell fraction of primary NSCLC is consistently low, and there is no significant correlation in NSCLC between hypoxia and glucose metabolism in NSCLC assessed by (18)F-FDG. These findings have direct implications in understanding the role of angiogenesis and hypoxia in NSCLC biology.
Download full-text PDF |
Source |
---|
Mol Pharm
January 2025
Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
Acute myocardial infarction (MI) remains a leading cause of mortality worldwide, with inflammatory and reparative phases playing critical roles in disease progression. Currently, there is a pressing need for imaging techniques to monitor immune cell infiltration and inflammation activity during these phases. We developed a novel probe, Tc-HYNIC-mAb, utilizing a monoclonal antibody that targets the voltage-gated potassium channel 1.
View Article and Find Full Text PDFCancer Sci
January 2025
Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.
Immunotherapy has revolutionized cancer treatment, making it a challenge to noninvasively monitor immune infiltration. Metabolic reprogramming in cancers, including hepatocellular carcinoma (HCC), is closely linked to immune status. In this study, we aimed to evaluate the ability of carbon-11 acetate (C-acetate) and fluorine-18 fluorodeoxyglucose (F-FDG) PET/CT findings in predicting overall survival (OS) and immune infiltration in HCC patients.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
CReSTIC, UR 3804, Université de Reims Champagne-Ardenne, 51687 Reims, France.
: Cervical cancer is a significant global health concern, with high incidence and mortality rates, especially in less-developed regions. [F]FDG PET/CT is now indicated at various stages of management, but its analysis is essentially based on SUVmax, a measure of [F]FDG uptake. Radiomics, by extracting a multitude of parameters, promises to improve the diagnostic and prognostic performance of the examination.
View Article and Find Full Text PDFOtol Neurotol
January 2025
Department of Otolaryngology-Head and Neck Surgery.
Objective: This study aims to identify 18F-FDG-PET imaging features for improving treatment response evaluation in patients with necrotizing otitis externa (NOE), aiding in the difficult differentiation between sterile inflammation and active infection.
Study Design: Retrospective cohort study.
Setting: Tertiary hospital.
AJNR Am J Neuroradiol
January 2025
From the School of Biomedical Engineering (B.C., H.H., J.L., S.Y., Y.C., J.L.), Shanghai Jiao Tong University, Shanghai, China; Department of Neurosurgery (S.J., J.H., L.C.), and PET Center (W.B.), Huashan Hospital, Fudan University, Shanghai, China.
Background And Purpose: Epilepsy, a globally prevalent neurological disorder, necessitates precise identification of the epileptogenic zone (EZ) for effective surgical management. While the individual utilities of FDG PET and FMZ PET have been demonstrated, their combined efficacy in localizing the epileptogenic zone remains underexplored. We aim to improve the non-invasive prediction of epileptogenic zone (EZ) in temporal lobe epilepsy (TLE) by combining FDG PET and FMZ PET with statistical feature extraction and machine learning.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!