Sex differences in postexercise esophageal and muscle tissue temperature response.

Am J Physiol Regul Integr Comp Physiol

Laboratory of Human Bioenergetics and Environmental Physiology, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada.

Published: April 2007

Factors associated with blood pressure regulation during recovery from exercise dramatically influence core temperature regulation. However, it is unknown whether sex-related differences in postexercise hemodynamics affect core and muscle temperature response. Sixteen participants (8 males, 8 females) completed an incremental isotonic test on a Kin-Com isokinetic apparatus to determine their activity-specific peak oxygen consumption during bilateral knee extensions (Vo(2)(sp)). On a separate day, participants performed 15 min of isolated bilateral knee extensions at a moderate (60% Vo(2)(sp)) exercise intensity followed by a 90-min recovery. Esophageal temperature (T(es)), mean arterial pressure (MAP), muscle temperature at four depths in the active vastus medialis (T(VM)) and three depths in the inactive triceps brachii (T(TB)) were measured concurrently with sweat rate and cutaneous vascular conductance (CVC). Relative to the preexercise resting T(es) of 36.7 degrees C (SD 0.1), between 10 and 50-min of recovery T(es) was 0.19 degrees C (SD 0.02) higher for females than males (P = 0.037). All measurements of T(VM) (0.036 > P > 0.014) and T(TB) (0.048 > P > 0.008) were higher for females during the initial 30 min of recovery by between 0.46 degrees C and 0.64 degrees C for T(VM) and by between 0.53 degrees C and 0.70 degrees C for T(TB). In parallel, females showed a 5 to 7 mmHg greater reduction in MAP during recovery relative to males (P = 0.002) and a significantly lower CVC (P = 0.020) and sweat rate (P = 0.034). Therefore, it is concluded that females demonstrate a greater and more prolonged elevation in postexercise esophageal temperature and active and inactive muscle temperatures, which is paralleled by a greater postexercise hypotensive response.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpregu.00638.2006DOI Listing

Publication Analysis

Top Keywords

differences postexercise
8
postexercise esophageal
8
temperature response
8
muscle temperature
8
bilateral knee
8
knee extensions
8
esophageal temperature
8
sweat rate
8
higher females
8
temperature
6

Similar Publications

Aerobic exercise (AE) is associated with a significant hypoglycemia risk in individuals with type 1 diabetes mellitus (T1DM). However, the mechanisms in the liver and skeletal muscle governing exercise-induced hypoglycemia in T1DM are poorly understood. This study examined the effects of a 60-minute bout of AE on hepatic and muscle glucose metabolism in T1DM rats.

View Article and Find Full Text PDF

Introduction: Bone turnover markers reflected the bone remodeling process and bone health in clinical studies. Studies on variation of bone remodeling markers in different stage CKD were scant, and this study investigated the role of bedside intradialytic cycling in altering concentrations of bone-remodeling markers in patients with end-stage renal disease (ESRD).

Materials And Methods: Participants were segmented into four groups: a group with eGFR >60 ml/min/1.

View Article and Find Full Text PDF

Fluid Intake and Hydration Responses to Mass Participation Gravel Cycling.

Int J Exerc Sci

December 2024

Metabolism and Applied Physiology Laboratory, Department of Kinesiology, California State University, San Marcos, San Marcos, USA.

Gravel cycling is a relatively new cycling discipline, with the Union Cycliste Internationale (UCI) hosting their first World Championships in 2022. Gravel races combine features of road racing, cyclocross, and mountain biking, including terrain of varying technical difficulty, long distances, substantial elevation gain, obstacles, and limited opportunities to stop for in-race nutrition. This study assessed hydration responses to gravel races of three different distances.

View Article and Find Full Text PDF

High-incline walking is a relatively new trend with little comparative information. This study compared physiological and psychological differences between high-incline walking at 20% grade (HIW) and level-grade jogging (LGJ) at isocaloric intensities in young adults. Twenty-two participants (M = 11, F = 11) aged 19-31 years completed the study.

View Article and Find Full Text PDF

Maximal Intensity Exercise Induces Adipokine Secretion and Disrupts Prooxidant-Antioxidant Balance in Young Men with Different Body Composition.

Int J Mol Sci

January 2025

Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, Faculty of Physical Education and Sport, University of Physical Education in Kraków, 31-571 Kraków, Poland.

Maximal physical effort induces a disturbance in the body's energy homeostasis and causes oxidative stress. The aim of the study was to determine whether prooxidant-antioxidant balance disturbances and the secretion of adipokines regulating metabolism, induced by maximal intensity exercise, are dependent on body composition in young, healthy, non-obese individuals. We determined changes in the concentration of advanced protein oxidation products (AOPP), markers of oxidative damage to nucleic acids (DNA/RNA/ox), and lipid peroxidation (LPO); catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activity, as well as concentrations of visfatin, leptin, resistin, adiponectin, asprosin, and irisin in the blood before and after maximal intensity exercise in men with above-average muscle mass (NFAT-HLBM), above-average fat mass (HFAT-NLBM), and with average body composition (NFAT-NLBM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!