Centromeres are the chromosomal domains necessary for faithful chromosome segregation and transmission during mitosis and meiosis in eukaryotes. In the last decade, centromeres in some plant species including Arabidopsis, rice and maize have been deeply studied at molecular level. Centromeric DNAs evolve rapidly and are little conserved among various plants, but the types of centromeric DNA sequences and their organization patterns within centromeres are basically similar in plants. Plant centromeres are usually composed of clusters of tandemly arrayed satellite repeats that are interspersed with centromere-specific retrotransposons. In contrast to centromeric DNA, structural and transient centromeric/kinetochoric proteins are conserved among eukaryotes including plants. As the cases in other eukaryotes, the presence of CENH3 (centromeric histone H3)-containing nucleosomes is the fundamental feature of plant functional centromeres, and CENH3 plays critical roles in the identity and maintenance of plant centromeric chromatin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1360/yc-006-1597 | DOI Listing |
Nat Commun
December 2024
Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA.
Pluripotent stem cells possess a unique nuclear architecture characterized by a larger nucleus and more open chromatin, which underpins their ability to self-renew and differentiate. Here, we show that the nucleolus-specific RNA helicase DDX18 is essential for maintaining the pluripotency of human embryonic stem cells. Using techniques such as Hi-C, DNA/RNA-FISH, and biomolecular condensate analysis, we demonstrate that DDX18 regulates nucleolus phase separation and nuclear organization by interacting with NPM1 in the granular nucleolar component, driven by specific nucleolar RNAs.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstr 3, 06466 Seeland, Germany.
In eukaryotes, accurate chromosome segregation during cell division relies on the centromeric histone H3 variant, CENH3. Our previous work identified KINETOCHORE NULL2 (αKNL2) as a plant CENH3 assembly factor, which contains a centromere-targeting motif, CENPC-k, analogous to the CENPC motif found in CENP-C. We also demonstrated that αKNL2 can bind DNA in vitro in a sequence-independent manner, without the involvement of its CENPC-k motif.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Biology, Penn State University, University Park, PA 16802, USA.
Non-canonical (non-B) DNA structures-e.g., bent DNA, hairpins, G-quadruplexes, Z-DNA, etc.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
Incomplete sister centromere decatenation results in centromeric ultrafine anaphase bridges (UFBs). PICH (PLK1-interacting checkpoint helicase), a DNA translocase, plays a crucial role in UFB resolution by recruiting UFB-binding proteins and stimulating topoisomerase IIα. However, the involvement of distinct PICH functions in UFB resolution remains ambiguous.
View Article and Find Full Text PDFFEBS Lett
December 2024
Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
Genome maintenance is essential for the integrity of the genetic blueprint, of which only a small fraction is transcribed in higher eukaryotes. DNA lesions occurring in the transcribed genome trigger transcription pausing and transcription-coupled DNA repair. There are two major transcription-coupled DNA repair pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!