Objective: We previously reported the therapeutic success of different BNCT protocols in the treatment of oral cancer, employing the hamster cheek pouch model. The aim of the present study was to evaluate the effect of these BNCT protocols on DNA synthesis in precancerous and normal tissue in this model and assess the potential lag in the development of second primary tumors in precancerous tissue. The data are relevant to potential control of field cancerized tissue and tolerance of normal tissue.
Materials And Methods: We evaluated DNA synthesis in precancerous and normal pouch tissue 1-30 days post-BNCT mediated by boronophenylalanine (BPA), GB-10 (Na(2)(10)B(10)H(10)) or (BPA+GB-10) employing incorporation of 5-bromo-2'-deoxyuridine as an end-point. The BNCT-induced potential lag in the development of second primary tumors from precancerous tissue was monitored.
Results: A drastic, statistically significant reduction in DNA synthesis occurred in precancerous tissue as early as 1 day post-BNCT and was sustained at virtually all time-points until 30 days post-BNCT for all the protocols. The histological categories evaluated individually within precancerous tissue (dysplasia, hyperplasia and NUMF [no unusual microscopic features]) responded similarly. DNA synthesis in normal tissue treated with BNCT oscillated around the very low pre-treatment values. A BNCT-induced lag in the development of second primary tumors was observed.
Conclusions: BNCT induced a drastic fall in DNA synthesis in precancerous tissue that would be associated to the observed lag in the development of second primary tumors. The minimum variations in DNA synthesis in BNCT-treated normal tissue would correlate with the absence of normal tissue radiotoxicity. The present data would support the control of field-cancerized areas by BNCT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.archoralbio.2006.10.007 | DOI Listing |
J Biomed Sci
January 2025
Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, 130024, China.
ROS cause multiple forms of DNA damage, and among them, 8-oxoguanine (8-oxoGua), an oxidized product of guanine, is one of the most abundant. If left unrepaired, 8-oxoGua may pair with A instead of C, leading to a mutation of G: C to T: A during DNA replication. 8-Oxoguanine DNA glycosylase 1 (OGG1) is a tailored repair enzyme that recognizes 8-oxoGua in DNA duplex and initiates the base excision repair (BER) pathway to remove the lesion and ensure the fidelity of the genome.
View Article and Find Full Text PDFGenome Biol
December 2024
Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
Background: DNA damage tolerance (DDT) enables replication to continue in the presence of fork stalling lesions. In mammalian cells, DDT is regulated by two independent pathways, controlled by the polymerase REV1 and ubiquitinated PCNA, respectively.
Results: To determine the molecular and genomic impact of a global DDT defect, we studied Pcna;Rev1 compound mutants in mouse cells.
Anticancer Res
December 2024
Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Guangzhou, P.R. China;
Background/aim: Solute carrier (SLC) family 15 member 2 (SLC15A2) is an integral member of the SLC family that plays a pivotal role in numerous biological processes, including the regulation of cellular signaling pathways. However, its role in prostate cancer (PCa) remains inadequately elucidated. This study aims to investigate the prognostic significance of SLC15A2 in PCa.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China. Electronic address:
"One-pot" assays which combine amplification with CRISPR/Cas12a system are in constant attracted for biosensors development. Herein, we present a one-pot isothermal assay that Ligation-recognition triggered Recombinase Polymerase Amplification (RPA)-CRISPR/Cas12a cis-cleavage (LRPA-CRISPR) fluorescent biosensor for sensitive, specific, and label-free miRNA detection. Firstly, we reveal the programmed double-stranded DNA amplicons, which utilized the ligation-recognition and polymerization to form and amplified by the RPA system.
View Article and Find Full Text PDFImmunol Cell Biol
December 2024
R&D, Sanquin Diagnostic Services, Amsterdam, The Netherlands.
Understanding antigen-specific T-cell responses is crucial for advancing immunotherapies and vaccine development. This study proposes a novel approach combining two complementary assays: the 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay (tracking proliferation over 0-48 h) and the VPD450 dye dilution assay (tracking proliferation over 4-6 days). Integrating these techniques provides additional insights into T-cell proliferation kinetics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!