[Reflections on error in medicine].

Medicina (B Aires)

Published: August 2007

Download full-text PDF

Source

Publication Analysis

Top Keywords

[reflections error
4
error medicine]
4
[reflections
1
medicine]
1

Similar Publications

There is a growing understanding of the structural dynamics of biological molecules fueled by x-ray crystallography experiments. Time-resolved serial femtosecond crystallography (TR-SFX) with x-ray Free Electron Lasers allows the measurement of ultrafast structural changes in proteins. Nevertheless, this technique comes with some limitations.

View Article and Find Full Text PDF

Background: Many patients with X-linked agammaglobulinemia (XLA) nowadays have reached adulthood, as well as their sisters, possibly carriers of a deleterious Bruton tyrosine kinase variant. Studies on motherhood outcomes in families with XLA are lacking.

Objective: We sought to investigate adherence to carrier status screening, interest in preconception and prenatal genetic counseling, and reproductive decisions in relatives with XLA.

View Article and Find Full Text PDF

Temporal variations in and predictive values of ABG results prior to in-hospital cardiac arrest.

J Med Surg Public Health

December 2024

College of Nursing, Michigan State University, Michigan, Life Science, 1355 Bogue St Room A218, East Lansing, MI 48824, USA.

In-hospital cardiac arrest (IHCA) has been understudied relative to out-of-hospital cardiac arrest. Further, studies of IHCA have mainly focused on a limited number of pre-arrest patient characteristics (e.g.

View Article and Find Full Text PDF

New developments in the field of chemical graph theory have made it easier to comprehend how chemical structures relate to the graphs that underlie them on a more profound level using the ideas of classical graph theory. Chemical graphs can be effectively probed with the help of quantitative structure-property relationship (QSPR) analysis. In order to statistically correlate physical attributes.

View Article and Find Full Text PDF

Mid-infrared spectral analysis has long been recognized as the most accurate noninvasive blood glucose measurement method, yet no practical compact mid-infrared blood glucose sensor has ever passed the accuracy benchmark set by the USA Food and Drug Administration (FDA): to substitute for the finger-pricking glucometers in the market, a new sensor must first show that 95% of their glucose measurements have errors below 15% of these glucometers. Although recent innovative exploitations of the well-established Fourier-transform infrared (FTIR) spectroscopy have reached such FDA accuracy benchmarks, an FTIR spectrometer is too bulky. The advancements of quantum cascade lasers (QCLs) can lead to FTIR spectrometers of reduced size, but compact QCL-based noninvasive blood glucose sensors are not yet available.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!