Myokymia is characterized by spontaneous, involuntary muscle fiber group contraction visible as vermiform movement of the overlying skin. Myokymia with episodic ataxia is a rare, autosomal dominant trait caused by mutations in KCNA1, encoding a voltage-gated potassium channel. In the present study, we report a family with four members affected with myokymia. Additional clinical features included motor delay initially diagnosed as cerebral palsy, worsening with febrile illness, persistent extensor plantar reflex, and absence of epilepsy or episodic ataxia. Mutation analysis revealed a novel c.676C>A substitution in the potassium channel gene KCNA1, resulting in a T226K nonconservative missense mutation in the Kv1.1 subunit in all affected individuals. Electrophysiological studies of the mutant channel expressed in Xenopus oocytes indicated a loss of function. Co-expression of WT and mutant cRNAs significantly reduced whole-oocyte current compared to expression of WT Kv1.1 alone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1820748PMC
http://dx.doi.org/10.1007/s10048-006-0071-zDOI Listing

Publication Analysis

Top Keywords

potassium channel
12
episodic ataxia
8
functional analysis
4
analysis novel
4
novel potassium
4
channel
4
channel kcna1
4
kcna1 mutation
4
mutation hereditary
4
myokymia
4

Similar Publications

Background And Aim: Human dental pulp stem cells (hDPSCs) constitute a promising alternative for central nervous system (CNS) cell therapy. Unlike other human stem cells, hDPSCs can be differentiated, without genetic modification, to neural cells that secrete neuroprotective factors. However, a better understanding of their real capacity to give rise to functional neurons and integrate into synaptic networks is still needed.

View Article and Find Full Text PDF

Like, share, and spike: Glioblastoma progenitors influence neuronal excitability at the glioma-neural interface.

Neuron

January 2025

Department of Pathology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA. Electronic address:

Writing in Neuron, Zhang et al. identify a subpopulation of glioblastoma cells from patient tumor samples with progenitor-like features that expresses the potassium ion channel KCND2. In mouse and organoid models, these cells enhance neural activity at the glioma-neural interface.

View Article and Find Full Text PDF

Background: This study examines the impact of Phα1β, a spider peptide derived from the venom of , on the Kv11.1 potassium channel in HEK293 cells transfected with the human ERG potassium channel. Phα1β inhibits high-voltage calcium channels and acts as an antagonist of the TRPA1 receptor, both of which play crucial roles in pain transduction pathways.

View Article and Find Full Text PDF

A strong repetitive stimulus can occasionally enhance axonal excitability, leading to the generation of afterdischarge. This afterdischarge outlasts the stimulus period and originates either from the physiological spike initiation site, typically the axon initial segment, or from ectopic sites for spike generation. One of the possible mechanisms underlying the stimulus-induced ectopic afterdischarge is the local depolarization due to accumulated potassium ions surrounding the axonal membranes of the distal portion.

View Article and Find Full Text PDF

Phosphorylation of Arabidopsis NRT1.1 regulates plant stomatal aperture and drought resistance in low nitrate condition.

BMC Plant Biol

January 2025

MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China.

Background: NITRATE TRANSPORTER 1.1 (NRT1.1) functions as a dual affinity nitrate transceptor regulated by phosphorylation at threonine residue 101 (T101).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!