The RNase H domain of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase was released from recombinant DHFR-RNase H fusion protein by the action of HIV-1 protease and crystallized as large trigonal prisms that diffract x-rays to at least 2.4-A resolution. The protease cleavage occurred 18 residues away from the Phe440-Tyr441 site reported to be processed during maturation of the reverse transcriptase heterodimer. Mutagenesis of the protease-sensitive region (residues 430-440), which is part of the crystallized domain, indicates that any alteration of the wild-type sequence results in increased proteolysis of the p66 subunit. A model of asymmetric processing in HIV-1 reserve transcriptase which involves partial unfolding of the RNase H domain is proposed based on these results and the recently reported three-dimensional structure of this domain.

Download full-text PDF

Source

Publication Analysis

Top Keywords

rnase domain
12
reverse transcriptase
12
domain human
8
human immunodeficiency
8
immunodeficiency virus
8
virus type
8
domain
5
proteolytic release
4
release crystallization
4
crystallization rnase
4

Similar Publications

Background: Type I interferonopathies including Aicardi-Goutiéres Syndrome (AGS) represent a heterogeneous group of clinical phenotypes. Herein, we present a Case with combined AGS and Cornelia de Lange Syndrome (CdLS)-a cohesinopathy-with comprehensive analysis of the immune and genomic abnormalities.

Case And Methods: A 20-year old man presented with chilblain lesions and resorption of distal phalanges of fingers and toes, somatic and psychomotor retardation, microcephaly, synophrys, hearing losing and other aberrancies consistent with the phenotype of CdLS.

View Article and Find Full Text PDF

Post-transcriptional regulation of aromatic amino acid metabolism by GcvB small RNA in .

Microbiol Spectr

January 2025

Department of Infection Biology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan.

synthesizes aromatic amino acids (AAAs) through the common pathway to produce the precursor, chorismate, and the three terminal pathways to convert chorismate into Phe, Tyr, and Trp. also imports exogenous AAAs through five transporters. GcvB small RNA post-transcriptionally regulates more than 50 genes involved in amino acid uptake and biosynthesis in , but the full extent of GcvB regulon is still underestimated.

View Article and Find Full Text PDF

In 2001, two enzyme-encoding genes were recognized in the fruit fly . The genetic material, labeled and , encodes ribonuclease-type enzymes with slightly diverse target substrates. The human orthologue is .

View Article and Find Full Text PDF

Role of tRNA-Derived Fragments in Protozoan Parasite Biology.

Cells

January 2025

Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA 94305, USA.

tRNA molecules are among the most fundamental and evolutionarily conserved RNA types, primarily facilitating the translation of genetic information from mRNA into proteins. Beyond their canonical role as adaptor molecules during protein synthesis, tRNAs have evolved to perform additional functions. One such non-canonical role for tRNAs is through the generation of tRNA-derived fragments via specific cleavage processes.

View Article and Find Full Text PDF

We show that a small biotin-binding RNA aptamer that folds into a pseudoknot structure acts as a substrate for bacterial RNase P RNA (RPR) with and without the RNase P C5 protein. Cleavage in the single-stranded region in loop 1 was shown to depend on the presence of a RCCA-motif at the 3' end of the substrate. The nucleobase and the 2'hydroxyl at the position immediately 5' of the cleavage site contribute to both cleavage efficiency and site selection, where C at this position induces significant cleavage at an alternative site, one base upstream of the main cleavage site.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!