Death-associated protein-3 (DAP3) is a GTP binding protein previously implicated in both intramitochondrial protein synthesis and apoptosis. To explore the in vivo roles of DAP3, we generated and characterized DAP3-deficient mice. Homozygous dap3-/- embryos died at approximately day 9.5 in utero. The dap3-/- embryos and placentas were markedly shrunken. Embryos had arrested development, displaying severe growth restriction and lack of axial turning. Transmission electron microscopy analysis revealed abnormal, shrunken mitochondria with swollen crystae in dap3-/- embryos. Levels of cytochrome c oxidase-I, a protein encoded in the mitochondrial genome, were reduced in dap3-/- embryos, consistent with a role for DAP3 in intramitochondrial protein synthesis. A requirement for DAP3 in mitochondrial respiration was also revealed by oxygen consumption measurements using cultured cells treated with DAP3-specific small interfering RNA (siRNA). Studies of cultured cells from dap3-/- embryos confirmed a role in apoptosis induced by stimuli that trigger the extrinsic (TNFalpha, TRAIL, anti-Fas antibody) but not intrinsic (mitochondrial) cell death pathway. Thus, DAP3 joins a growing list of bifunctional proteins that play roles in normal mitochondrial physiology and in apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.06-6283com | DOI Listing |
FASEB J
January 2007
Burnham Institute for Medical Research, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
Death-associated protein-3 (DAP3) is a GTP binding protein previously implicated in both intramitochondrial protein synthesis and apoptosis. To explore the in vivo roles of DAP3, we generated and characterized DAP3-deficient mice. Homozygous dap3-/- embryos died at approximately day 9.
View Article and Find Full Text PDFJ Cell Sci
October 2000
Medizinische Poliklinik and Physiologische Chemie, Universität München, Germany.
Programmed cell death is essential for organ development and regeneration. To identify molecules relevant for this process, full length cDNA cloning of a short, developmentally regulated murine cDNA fragment, MERM-3, was performed and showed a 1.7 kb mRNA encoding a 45 kDa protein with an ATP/GTP binding motive (P-loop).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!