Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Previously we elucidated the molecular interaction between the nucleoside diphosphate kinase A (NDPK-A)/AMP-activated protein kinase (AMPK) alpha1 complex, discovering a process we termed "substrate channeling." Here, we investigate the protein-protein interaction of the substrate channeling complex with the pleiotropic protein kinase, CK2 (formerly casein kinase 2). We show that CK2 is part of the NDPK-A/AMPK alpha1 complex under basal (background AMPK activity) conditions, binding directly to each of the complex components independently. We report that when S122 on NDPK-A is phosphorylated by AMPK alpha1 in vivo, (i.e., stimulation of AMPK using either metformin or phenformin) initiating the substrate channeling mechanism, the catalytic subunit of CK2 (CK2alpha) is expelled from the complex and translocates to bind NDPK-B, a closely related but independent isoform of NDPK. Thus, we find that the AMPK-dependent phospho-status of S122 on NDPK-A determines whether CK2alpha swaps partners between NDPK-A and NDPK-B. This is the first reported linkage between NDPK-A and NDPK-B via a phosphorylation pathway and could explain the complex biology of NDPK. This study also offers an explanation as to how CK2alpha exclusion mutations (S120A or S122D of NDPK-A) on NDPK-A might have implications in cancer biology and general cellular energy metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.06-6804com | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!