The potent vasoconstrictor endothelin leads to smooth muscle cell depolarization and increases in intracellular Ca2+. Although effects of endothelin on calcium channels have been described, it also has been speculated that endothelim may activate additional ion channels. The purpose of the present study was to identify an alternative ion current that could play a role in depolarizing cells in response to vasoconstrictors like endothelin and vasopressin. The effects of endothelin, vasopressin, sarafotoxin S6b, and phenylephrine were assessed using whole-cell patch-clamp recordings from primary dissociated rat aortic or mesenteric arterial smooth muscle cells cultured for 24-72 hours. From the usual resting potentials of these cells of -50 to -60 mV, endothelin (1-100 nM) induced a depolarization via an increase in membrane conductance. This depolarization was phasic, oscillating repeatedly from the resting potential to a relatively depolarized level and back to the resting potential. From a holding potential of -60 mV, endothelin-1, endothelin-3, vasopressin, or sarafotoxin S6b (but not phenylephrine) induced transient inward currents that also could be phasic. In external sodium, lithium, or cesium (but not Tris) and in internal potassium or cesium, these currents reversed near 0 mV. Although nifedipine-insensitive, the inward currents were absent in zero calcium, barium, or strontium, or in the presence of cobalt or nickel. These results represent the first report of a nonselective cation current in primary vascular smooth muscle cells that is calcium dependent and that could be responsible for the depolarizations induced from the resting potential by vasoconstrictors such as endothelin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.res.69.2.447 | DOI Listing |
Cureus
December 2024
Department of Obstetrics and Gynaecology, Tata Main Hospital, Jamshedpur, IND.
An uncommon and recently identified Müllerian anomaly is the accessory cavitated uterine mass (ACUM). It is distinguished by the presence of a noncommunicating auxiliary cavity inside the uterus, located near and surrounded by uterine smooth muscle, and bordered by functioning endometrium beneath the round ligament's insertion, with a perfectly healthy uterus, ovaries, tubes, and cavity. Given that it is a congenital ailment with a persistent Müllerian duct at the level of the round ligament, primarily resulting from gubernaculum dysfunction, it usually manifests clinically as childhood dysmenorrhea in girls.
View Article and Find Full Text PDFBackground: Previous studies have suggested that changes in the composition of the extracellular matrix (ECM) play a significant role in the development of ligamentum flavum hypertrophy (LFH) and the histological differences between the ventral and dorsal layers of the hypertrophied ligamentum flavum. Although LFH is associated with increased fibrosis in the dorsal layer, comprehensive research exploring the characteristics of the ECM and its mechanical properties in both regions is limited. Furthermore, the distribution of fibrosis-associated myofibroblasts within LFH remains poorly understood.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Zoology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India. Electronic address:
The pathophysiological relationship between wound healing impairment and diabetes is an intricate process. Burn injury among diabetes patients leads to neurological, vascular, and immunological abnormalities along with impaired activities of cell proliferation, collagen production, growth factors, and cytokine activities with huge bacterial infestation. In our study, we aimed to achieve a burn wound dressing material with the help of electrospun Chitosan/Polyethylene oxide/Rosmarinic acid (CS/PEO/RA) nanofibers.
View Article and Find Full Text PDFJ Mol Cell Cardiol
January 2025
School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, China; Chongqing Key Laboratory of New Drug Delivery System, Chongqing 400038, China. Electronic address:
Background And Aim: Our previous research indicates that sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) dysfunction facilitates the phenotypic transformation of aortic smooth muscle cells (ASMCs) and intensifies aortic aneurysm through the regulation of calcium-dependent pathways and endoplasmic reticulum stress. Our hypothesis is that additional mechanisms are involved in aortic aneurysm and atherosclerosis induced by SERCA2 dysfunction from the perspective of ASMC phenotypic transformation.
Methods & Results: In SERCA2 dysfunctional mice and their control littermates, ASMCs were isolated to analyze protein expression and cell functions, and angiotensin II was infused into these mice that were backcrossed into LDL receptor deficient background to induce aortic aneurysm and atherosclerosis.
Biochim Biophys Acta Mol Cell Biol Lipids
January 2025
Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, China. Electronic address:
Background: The phenotypic switch of vascular smooth muscle cells (VSMCs) underlies the pathology of many cardiovascular diseases. Histone deacetylase 3 (HDAC3) is reported to upregulate in several cardiovascular diseases. RGFP966 is a highly selective HDAC3 inhibitor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!