Genomewide screens for Escherichia coli genes affecting growth of T7 bacteriophage.

Proc Natl Acad Sci U S A

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.

Published: December 2006

Use of bacteriophages as a therapy for bacterial infection has been attempted over the last century. Such an endeavor requires the elucidation of basic aspects of the host-virus interactions and the resistance mechanisms of the host. Two recently developed bacterial collections now enable a genomewide search of the genetic interactions between Escherichia coli and bacteriophages. We have screened >85% of the E. coli genes for their ability to inhibit growth of T7 phage and >90% of the host genes for their ability to be used by the virus. In addition to identifying all of the known interactions, several other interactions have been identified. E. coli CMP kinase is essential for T7 growth, whereas overexpression of the E. coli uridine/cytidine kinase inhibits T7 growth. Mutations in any one of nine genes that encode enzymes for the synthesis of the E. coli lipopolysaccharide receptor for T7 adsorption leads to T7 resistance. Selection of T7 phage that can recognize these altered receptors has enabled the construction of phage to which the host is 100-fold less resistant.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1748173PMC
http://dx.doi.org/10.1073/pnas.0609428103DOI Listing

Publication Analysis

Top Keywords

escherichia coli
8
coli genes
8
genes ability
8
coli
6
genomewide screens
4
screens escherichia
4
genes
4
growth
4
genes growth
4
growth bacteriophage
4

Similar Publications

Ensuring everyone enjoys healthy lifestyles and well-being at all ages, Progress has been made in increasing access to clean water and sanitation facilities and reducing the spread of epidemics and diseases. The synthesis of nano-particles (NPs) by using microalgae is a new nanobiotechnology due to the use of the biomolecular (corona) of microalgae as a capping and reducing agent for NP creation. This investigation explores the capacity of a distinct indigenous microalgal strain to synthesize silver nano-particles (AgNPs), as well as its effectiveness against multi-drug resistant (MDR) bacteria and its ability to degrade Azo dye (Methyl Red) in wastewater.

View Article and Find Full Text PDF

The highly rugged yet navigable regulatory landscape of the bacterial transcription factor TetR.

Nat Commun

December 2024

Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland.

Transcription factor binding sites (TFBSs) are important sources of evolutionary innovations. Understanding how evolution navigates the sequence space of such sites can be achieved by mapping TFBS adaptive landscapes. In such a landscape, an individual location corresponds to a TFBS bound by a transcription factor.

View Article and Find Full Text PDF

Most bacteria lack membrane-enclosed organelles and rely on macromolecular scaffolds at different subcellular locations to recruit proteins for specific functions. Here, we demonstrate that the optogenetic CRY2-CIB1 system from Arabidopsis thaliana can be used to rapidly direct proteins to different subcellular locations with varying efficiencies in live Escherichia coli cells, including the nucleoid, the cell pole, the membrane, and the midcell division plane. Such light-induced re-localization can be used to rapidly inhibit cytokinesis in actively dividing E.

View Article and Find Full Text PDF

Background And Objectives: The incidence of multidrug-resistant, Gram-negative organisms, isolated as the etiological agents of infections is ascending. The advent of novel antibiotics poses significant challenges, necessitating the optimization and utilization of extant antimicrobial agents. Cefoperazone, a third-generation cephalosporin and β-lactam antimicrobial, when combined with sulbactam, an irreversible β-lactamase inhibitor, mitigates the vulnerability of cefoperazone to β-lactamase-producing organisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!