Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Transmembrane chloride ion conductance in skeletal muscle increases during early postnatal development. A transgenic mouse model of myotonic dystrophy type 1 (DM1) displays decreased sarcolemmal chloride conductance. Both effects result from modulation of chloride channel 1 (CLCN1) expression, but the respective contributions of transcriptional vs. posttranscriptional regulation are unknown. Here we show that alternative splicing of CLCN1 undergoes a physiological splicing transition during the first 3 wk of postnatal life in mice. During this interval, there is a switch to production of CLCN1 splice products having an intact reading frame, an upregulation of CLCN1 mRNA encoding full-length channel protein, and an increase of CLCN1 function, as determined by patch-clamp analysis of single muscle fibers. In a transgenic mouse model of DM1, however, the splicing transition does not occur, CLCN1 channel function remains low throughout the postnatal interval, and muscle fibers display myotonic discharges. Thus alternative splicing is a posttranscriptional mechanism regulating chloride conductance during muscle development, and the chloride channelopathy in a transgenic mouse model of DM1 results from a failure to execute a splicing transition for CLCN1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpcell.00336.2006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!