Microdeletions of the 22q11 region, responsible for the velo-cardio-facial syndrome (VCFS), are associated with an increased risk for psychosis and mental retardation. Recently, it has been shown in a hyperprolinemic mouse model that an interaction between two genes localized in the hemideleted region, proline dehydrogenase (PRODH) and catechol-o-methyl-transferase (COMT), could be involved in this phenotype. Here, we further characterize in eight children the molecular basis of type I hyperprolinemia (HPI), a recessive disorder resulting from reduced activity of proline dehydrogenase (POX). We show that these patients present with mental retardation, epilepsy and, in some cases, psychiatric features. We next report that, among 92 adult or adolescent VCFS subjects, a subset of patients with severe hyperprolinemia has a phenotype distinguishable from that of other VCFS patients and reminiscent of HPI. Forward stepwise multiple regression analysis selected hyperprolinemia, psychosis and COMT genotype as independent variables influencing IQ in the whole VCFS sample. An inverse correlation between plasma proline level and IQ was found. In addition, as predicted from the mouse model, hyperprolinemic VCFS subjects bearing the Met-COMT low activity allele are at risk for psychosis (OR = 2.8, 95% CI = 1.04-7.4). Finally, from the extensive analysis of the PRODH gene coding sequence variations, it is predicted that POX residual activity in the 0-30% range results into HPI, whereas residual activity in the 30-50% range is associated either with normal plasma proline levels or with mild-to-moderate hyperprolinemia.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddl443DOI Listing

Publication Analysis

Top Keywords

psychiatric features
8
risk psychosis
8
mental retardation
8
mouse model
8
proline dehydrogenase
8
vcfs subjects
8
plasma proline
8
residual activity
8
vcfs
5
involvement hyperprolinemia
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!