Autophagy is a cellular response to adverse environment and stress, but its significance in cell survival is not always clear. Here we show that autophagy could be induced in the mammalian cells by chemicals, such as A23187, tunicamycin, thapsigargin, and brefeldin A, that cause endoplasmic reticulum stress. Endoplasmic reticulum stress-induced autophagy is important for clearing polyubiquitinated protein aggregates and for reducing cellular vacuolization in HCT116 colon cancer cells and DU145 prostate cancer cells, thus mitigating endoplasmic reticulum stress and protecting against cell death. In contrast, autophagy induced by the same chemicals does not confer protection in a normal human colon cell line and in the non-transformed murine embryonic fibroblasts but rather contributes to cell death. Thus the impact of autophagy on cell survival during endoplasmic reticulum stress is likely contingent on the status of cells, which could be explored for tumor-specific therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M609267200 | DOI Listing |
Vertebrate vision in dim-light environments is initiated by rod photoreceptor cells that express the photopigment rhodopsin, a G-protein coupled receptor (GPCR). To ensure efficient light capture, rhodopsin is densely packed into hundreds of membrane discs that are tightly stacked within the rod-shaped outer segment compartment. Along with its role in eliciting the visual response, rhodopsin serves as both a building block necessary for proper outer segment formation as well as a trafficking guide for a few outer segment resident membrane proteins.
View Article and Find Full Text PDFBeta-propeller Protein Associated Neurodegeneration (BPAN) is a devastating neurodevelopmental and neurodegenerative disease linked to variants in . Currently, there is no cure or disease altering treatment for this disease. This is, in part, due to a lack of insight into early phenotypes of BPAN progression and 's role in establishing and maintaining neurological function.
View Article and Find Full Text PDFDuring type 1 diabetes (T1D) progression, beta cells become dysfunctional and exhibit reduced first-phase insulin release. While this period of beta cell dysfunction is well established, its cause and underlying mechanism remain unknown. To address this knowledge gap, live human pancreas tissue slices were prepared from autoantibody- negative organ donors without diabetes (ND), donors positive for one or more islet autoantibodies (AAb+), and donors with T1D within 0-4 years of diagnosis (T1D+).
View Article and Find Full Text PDFGlucose-6-Phosphatase (G6Pase), a key enzyme in gluconeogenesis and glycogenolysis in the mammalian liver and kidney, converts glucose-6-phosphate to glucose for maintaining systemic blood glucose homeostasis during nutrient deprivation. However, its function has remained elusive in insects, which have no need for G6Pase in sugar homeostasis since they convert glucose-6-phosphate to trehalose, their main circulating sugar, via trehalose phosphate synthase (TPS1). In this study we identify an unexpected and essential requirement for G6Pase in male fertility, specifically to produce motile sperm.
View Article and Find Full Text PDFBackground: Juxtaglomerular (JG) cells are sensors that control blood pressure and fluid-electrolyte homeostasis. In response to a decrease in perfusion pressure or changes in the composition and/or volume of the extracellular fluid, JG cells release renin, which initiates an enzymatic cascade that culminates in the production of angiotensin II (Ang II), a potent vasoconstrictor that restores blood pressure and fluid homeostasis. In turn, Ang II exerts a negative feedback on renin release, thus preventing excess circulating renin and the development of hypertension.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!