Multiclass classification is an important and ongoing research subject in machine learning. Current support vector methods for multiclass classification implicitly assume that the parameters in the optimization problems are known exactly. However, in practice, the parameters have perturbations since they are estimated from the training data, which are usually subject to measurement noise. In this article, we propose linear and nonlinear robust formulations for multiclass classification based on the M-SVM method. The preliminary numerical experiments confirm the robustness of the proposed method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1162/neco.2007.19.1.258 | DOI Listing |
Sci Rep
January 2025
School of Computer Science and Engineering (SCOPE), VIT-AP University, Amaravati, Andhra Pradesh, 522237, India.
Indian mythology is a treasure trove of divine tales, yet a gap in understanding still exists between foreign tourists and the rich cultural heritage of Indian deities. To address the problem, this paper presents a deep learning-driven mobile application named "MythicVision" designed to help foreign tourists better understand India's rich cultural heritage by recognizing and interpreting images of Indian mythological deities. At first, four state-of-the-art deep models have been trained and evaluated on a custom in-house dataset consists of 10,970 images of various Indian deities sourced from both natural scene and web images.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Information Engineering, Università Politecnica delle Marche, via Brecce Bianche, Ancona, 60131, Italy.
Background: Deep-learning applications in cardiology typically perform trivial binary classification and are able to discriminate between subjects affected or not affected by a specific cardiac disease. However, this working scenario is very different from the real one, where clinicians are required to recognize the occurrence of one cardiac disease among the several possible ones, performing a multiclass classification. The present work aims to create a new interpretable deep-learning tool able to perform a multiclass classification and, thus, discriminate among several different cardiac diseases.
View Article and Find Full Text PDFInt J Pharm
January 2025
Process Research & Development, Merck & Co., Inc., Rahway, NJ, USA.
Film-coating is a critical step in pharmaceutical manufacturing. Traditional visual inspections for film-coated tablet defect assessment are subjective, inefficient, and labor-intensive. We propose a novel approach utilizing machine learning and image analysis to address these limitations.
View Article and Find Full Text PDFVet World
November 2024
Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
Background And Aim: Zoonotic diseases caused by various blood parasites are important public health concerns that impact animals and humans worldwide. The traditional method of microscopic examination for parasite diagnosis is labor-intensive, time-consuming, and prone to variability among observers, necessitating highly skilled and experienced personnel. Therefore, an innovative approach is required to enhance the conventional method.
View Article and Find Full Text PDFBrain Behav
January 2025
Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
Background: While automated methods for differential diagnosis of parkinsonian syndromes based on MRI imaging have been introduced, their implementation in clinical practice still underlies considerable challenges.
Objective: To assess whether the performance of classifiers based on imaging derived biomarkers is improved with the addition of basic clinical information and to provide a practical solution to address the insecurity of classification results due to the uncertain clinical diagnosis they are based on.
Methods: Retro- and prospectively collected data from multimodal MRI and standardized clinical datasets of 229 patients with PD (n = 167), PSP (n = 44), or MSA (n = 18) underwent multinomial classification in a benchmark study comparing the performance of nine machine learning methods.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!