Theoretical study of CCl(4) adsorption and hydrogenation on a Pt (111) surface.

J Phys Chem B

Department of Mathematics and Physics, China University of Petroleum, Beijing 102249, P. R. China.

Published: December 2006

The adsorption and hydrogenation of carbon tetrachloride (CCl(4)) on a Pt (111) surface have been investigated using density functional theory (DFT). We have performed calculations on the adsorption energies and structures of CCl(4) on four different adsorption sites of a Pt (111) surface using the full adsorbate geometry optimization method. The results show that the adsorption energy of all of the potential sites is less than -17 kcal/mol, which indicates that CCl(4) is physiosorbed on a Pt (111) surface through van der Waals interactions. The dissociation and hydrogenation pathways were investigated by a transition state search. For the Pt(15), Pt(19), and Pt(25) cluster surfaces, the activation energies of dissociation obtained in this work are 15.69, 16.94, and 16.77 kcal/mol, respectively. The hydrogenation of CCl(3). was studied at the on-top site of the Pt(15) cluster, and the calculated activation energy is 5.06 kcal/mol. The small activation energies indicate that the Pt (111) surface has high catalytic activity for the CCl(4) hydrogenation reaction. In addition, the Hirshfeld population analysis reveals that the charge transfer from the Pt (111) surface to the adsorbates occurs in both the dissociation and hydrogenation pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp0600054DOI Listing

Publication Analysis

Top Keywords

111 surface
24
ccl4 adsorption
8
adsorption hydrogenation
8
dissociation hydrogenation
8
hydrogenation pathways
8
activation energies
8
hydrogenation
6
0
6
surface
6
ccl4
5

Similar Publications

An ammonia-responsive aerogel-type colorimetric sensor for non-destructive monitoring of shrimp freshness.

Food Res Int

February 2025

Hubei Key Laboratory of Industry Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China; Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom. Electronic address:

The colorimetric sensor for volatile amines (VA) detection can realize non-destructive monitoring of shrimp quality. However, its sensing performance still needs to be improved. In this study, we proposed an aerogel-type colorimetric sensor to improve VA sensing performance and realize early detection of shrimp spoilage.

View Article and Find Full Text PDF

Impact of Subsurface Oxygen on CO Charging Energy Changes in Cu Surfaces.

J Phys Chem Lett

January 2025

Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States.

Subsurface oxygen in oxide-derived copper catalysts significantly influences CO activation. However, its effect on the molecular charging process, the key to forming the CO intermediate, remains poorly understood. We employ many-body perturbation theory to investigate the impact of the structural factors induced by the subsurface oxygen on the charged activation of CO.

View Article and Find Full Text PDF

Blue phosphorene, a two-dimensional, hexagonal-structured, semiconducting phosphorus, has gained attention as it is considered easier to synthesize on metal surfaces than its allotrope, black phosphorene. Recent studies report different structures of phosphorene, for example, on Cu(111), but the underlying mechanisms of their formation are not known. Here, using a combination of in situ ultrahigh vacuum low-energy electron microscopy and in vacuo scanning tunneling microscopy, we determine the time evolution of the surface structure and morphology during the deposition of phosphorus on single-crystalline Cu(111).

View Article and Find Full Text PDF

Identifying the Structure of Two-Dimensional ACuO (A = Na, K, Cs) Film on Cu(111) with Atomic Resolution.

J Phys Chem Lett

January 2025

College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry, Beijing Normal University, Beijing 100875, China.

The deposition of alkali metals on oxide surfaces has garnered significant interest due to their critical role in enhancing various catalytic processes. However, the atomic-scale characterization of these structures remains elusive, owing to the complex and competing interactions among the oxygen, the alkali metals, and the metal atoms within the oxides. In this work, we grew alkali metals (Na, K, Cs) on the copper oxide films on the Cu(111) surface and found the formation of hexagonally ordered monolayer films.

View Article and Find Full Text PDF

We investigated the reactivity of a -dichlorovinyl-carbazole precursor in the on-surface synthesis approach. Our findings reveal that, on the Au(111) surface, the thermally-induced dehalogenation reaction led to the formation of cumulene dimers. Contrastingly, the more reactive Cu(111) surface promoted the formation of a polyheterocyclic compound exhibiting extended aromaticity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!