Conflicts between structural requirements for carrying out different ecologically relevant functions may result in a compromise phenotype that maximizes neither function. Identifying and evaluating functional trade-offs may therefore aid in understanding the evolution of organismal performance. We examined the possibility of an evolutionary trade-off between aquatic and terrestrial locomotion in females of European species of the newt genus Triturus. Biomechanical models suggest a conflict between the requirements for aquatic and terrestrial locomotion. For instance, having an elongate, slender body, a large tail, and reduced limbs should benefit undulatory swimming, but at the cost of reduced running capacity. To test the prediction of an evolutionary trade-off between swimming and running capacity, we investigated relationships between size-corrected morphology and maximum locomotor performance in females of ten species of newts. Phylogenetic comparative analyses revealed that an evolutionary trend of body elongation (increasing axilla-groin distance) is associated with a reduction in head width and forelimb length. Body elongation resulted in reduced maximum running speed, but, surprisingly, also led to a reduction in swimming speed. The evolution of longer tails was associated with an increase in maximal swimming speed. We found no evidence for an evolutionary trade-off between aquatic and terrestrial locomotor performance, probably because of the unexpected negative effect of body elongation on swimming speed. We conclude that the idea of a design conflict between aquatic and terrestrial locomotion, mediated through antagonistic effects of body elongation, does not apply to our model system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1554/06-070.1 | DOI Listing |
Environ Toxicol Chem
January 2025
Osnabrück University, Osnabrück, Lower Saxony, Germany.
In regulatory aquatic risk assessment, toxicokinetic-toxicodynamic (TKTD) methods, such as the generalized unified threshold model of survival (GUTS), are already established and considered ready for use, whereas TKTD methods for aboveground terrestrial species, like arthropods, are less developed and currently not intended for risk assessment. This could be due to the fact that exposure in aboveground terrestrial systems is more event-based (feeding, contact, overspray, etc.), whereas exposure in aquatic systems is simply related to substance concentrations in the surrounding water.
View Article and Find Full Text PDFJ Dev Biol
December 2024
Comparative Histolab Padova, 35100 Padova, Italy.
The present, brief review paper summarizes previous studies on a new interpretation of the presence and absence of regeneration in invertebrates and vertebrates. Broad regeneration is considered exclusive of aquatic or amphibious animals with larval stages and metamorphosis, where also a patterning process is activated for whole-body regeneration or for epimorphosis. In contrast, terrestrial invertebrates and vertebrates can only repair injury or the loss of body parts through a variable "recovery healing" of tissues, regengrow or scarring.
View Article and Find Full Text PDFEcotoxicology
January 2025
Amity Institute of Environmental Sciences, Amity University, Sector-125, Noida, 201301, Uttar Pradesh, India.
As the global population continues to grow, the use of pesticides to increase food production is projected to escalate. Pesticides are critical in plant protection, offering a powerful defense against fungal diseases such as apple scab, leaf spot, sclerotinia rot, damping off, sheath blight, and root rot, which threaten crops like cereals, corn, cotton, soybean, sugarcane, tuberous vegetables, and ornamentals. Succinate Dehydrogenase Inhibitor (SDHI) fungicides represent a novel class essential for controlling fungal pathogens and bolstering food security.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Engineering Research Center of Biocontrol, Ministry of Education Guangdong Province, South China Agricultural University, Guangzhou 510640, China. Electronic address:
Microplastics have evolved as widespread contaminants in terrestrial and aquatic environments, raising significant environmental concerns due to their persistence and bioaccumulation. In this study, we investigated the toxicity of polyethylene microplastics (PE-MPs) on the agricultural insect, Spodoptera frugiperda. Maize leaves containing three sizes (0.
View Article and Find Full Text PDFVet Immunol Immunopathol
January 2025
Laboratory of Preventive Veterinary Medicine and Animal Health, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa-ken 252-0880, Japan. Electronic address:
Cetaceans have adapted to aquatic life by evolving various anatomic and physiologic traits, but biological defense mechanisms specific to aquatic mammals that protect against pathogenic microorganisms in the aquatic environment have not been elucidated. In this study, we investigated the migration of polymorphonuclear leukocytes in bottlenose dolphins in response to various chemotactic factors and compared the migration response with that of terrestrial animals such as cows and humans to characterize biological defense mechanisms unique to cetaceans. Bottlenose dolphin neutrophils showed strong chemotactic activity toward zymosan-activated serum and recombinant human interleukin-8 but no chemotaxis toward N-formyl-methionyl-leucyl-phenylalanine or leukotriene B at any concentration examined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!