We amplified, sequenced and studied the transcriptional regulation of genes of the alcoholic fermentation pathway in the biocontrol and non-Saccharomyces wine yeast, Pichia anomala. Two ADH isogenes, PaADH1 and PaADH2, and one PDC gene, PaPDC1, were amplified from genomic P. anomala DNA by a two-step PCR approach, using degenerated primers against conserved regions of the respective genes for cloning core regions, and PCR-based gene walking for cloning the respective 5' and 3'-ends. According to sequence analysis, ADH1 and PDC1 are most likely cytoplasmatic proteins, while ADH2 is most probably localized in the mitochondria. PaADH1 was expressed during aerobic growth on glucose, ethanol and succinate, but was nine-fold upregulated in response to oxygen limitation when grown on glucose. The gene seems to be involved in both production and consumption of ethanol. Only low expression of PaADH2 was detected during growth on glucose and ethanol, but it was highly expressed during growth on the non-fermentable carbon source succinate and repressed by the addition of glucose. PaPDC1 was expressed during aerobic growth on glucose and was upregulated four-fold in response to oxygen limitation. PaPDC1 expression was lower in cells grown on ethanol and succinate than on glucose and was up- regulated two- and four-fold, respectively, after glucose addition. Our results demonstrate that transcription of genes of the fermentative pathway is regulated by hypoxia and carbon source but posttranscriptional regulation may play a major role in regulating the metabolic flux.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/yea.1428 | DOI Listing |
Biophys Rep (N Y)
January 2025
Department of Chemistry and Biochemistry, Fulbright College of Art and Sciences, University of Arkansas, Fayetteville, AR 72701, USA. Electronic address:
Fibroblast Growth Factor 21 (FGF21) is an endocrine FGF that plays a vital role in regulating essential metabolic pathways. FGF21 increases glucose uptake by cells, promotes fatty acid oxidation, reduces blood glucose levels, and alleviates metabolic diseases. However, detailed studies on its stability and biophysical characteristics have not been reported.
View Article and Find Full Text PDFMult Scler Relat Disord
January 2025
Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, PR China. Electronic address:
Background: Circulating insulin-like growth factor 1 (IGF-1) is positively associated with the risks of certain neurological disorders, including stroke, Alzheimer's disease, and Parkinson's disease. However, the association of IGF-1 with the risk of multiple sclerosis (MS) remains unclear.
Methods: A total of 348,324 participants at baseline were included from the UK biobank in this prospective study.
J Chem Theory Comput
January 2025
Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States.
Algorithmic reaction explorations based on transition state searches can now routinely predict relatively short reaction sequences involving small molecules. However, applying these algorithms to deeper chemical reaction network (CRN) exploration still requires the development of more efficient and accurate exploration policies. Here, an exploration algorithm, which we name yet another kinetic strategy (YAKS), is demonstrated that uses microkinetic simulations of the nascent network to achieve cost-effective, deep network exploration.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India.
Turmeric is affected by various phytopathogens, which cause huge economic losses to farmers. In the present study, ten isolates of Pythium spp. were isolated from infected turmeric rhizomes and characterized.
View Article and Find Full Text PDFCochrane Database Syst Rev
January 2025
Cornell Joan Klein Jacobs Center for Precision Nutrition and Health, Cornell University, Ithaca, NY, USA.
Background: Precision nutrition-based methods develop tailored interventions and/or recommendations accounting for determinants of intra- and inter-individual variation in response to the same diet, compared to current 'one-size-fits-all' population-level approaches. Determinants may include genetics, current dietary habits and eating patterns, circadian rhythms, health status, gut microbiome, socioeconomic and psychosocial characteristics, and physical activity. In this systematic review, we examined the evidence base for the effect of interventions based on precision nutrition approaches on overweight and obesity in children and adolescents to help inform future research and global guidelines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!