In contrast to that in children, pharmacokinetic, pharmacodynamic, and safety information on pegaspargase in adults is very limited. We administered a single intravenous dose of pegaspargase (2000 IU/m2) as part of a standard frontline induction regimen to 25 adults with newly diagnosed acute lymphoblastic leukemia (ALL), and obtained serum samples on several time points. The population mean peak serum concentration of asparaginase enzymatic activity was 1 IU/mL, the elimination half-life was 7 days, and the volume of distribution was 2.43 L/m2. After the single dose, asparagine deamination was complete in all patients after 2 hours, and in 100%, 81%, and 44% on days 14, 21, and 28, respectively. A pharmocodynamic correlation model showed minimal enzymatic activity of 0.2 IU/mL for optimal asparagine depletion. The kinetic posthoc analyses demonstrated enzymatic activity for 3 weeks or more. One patient developed neutralizing antiasparaginase antibodies on day 22 after administration. Pegaspargase was well tolerated, with few grade 3/4 side effects. No allergic reactions or pancreatitis were observed. In adults aged 55 years or younger, pegaspargase produces a long duration of asparagine depletion and can be given intravenously, with a safety profile that is similar to equivalent multiple doses of intramuscular Escherichia coli asparaginase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1182/blood-2006-07-035006 | DOI Listing |
BMC Biol
January 2025
The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
Background: The variations in alliin content are a crucial criterion for evaluating garlic quality and is the sole precursor for allicin biosynthesis, which is significant for the growth, development, and stress response of garlic. WRKY transcription factors are essential for enhancing stress resistance by regulating the synthesis of plant secondary metabolites. However, the molecular mechanisms regulating alliin biosynthesis remain unexplored.
View Article and Find Full Text PDFSci Rep
January 2025
Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany János Street 11, 400028, Cluj-Napoca, Romania.
Efficient monitoring of the enzymatic PET-hydrolysis is crucial for developing novel plastic-degrading biocatalysts. Herein, we aimed to upgrade in terms of accuracy the analytical methods useful for monitoring enzymatic PET-degradation. For the HPLC-based assessment, the incorporation of an internal standard within the analytic procedure enabled a more accurate quantification of the overall TPA content and the assessment of molar distributions and relative content of each aromatic degradation product.
View Article and Find Full Text PDFSci Rep
January 2025
Plant Production Engineering and Genetics Department, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran.
Abiotic stresses, notably cold stress, significantly influence various aspects of plant development and reproduction. Various approaches have been proposed to counteract the adverse impacts of cold stress on plant productivity. The unique properties of nanoparticles contribute to an enhanced tolerance of plants to challenging conditions.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University Kunming 650201, China.
Lithocarpus litseifolius is rich in the chalcones phloridzin and trilobatin, the biosynthesis pathways of which have not been fully demonstrated. Chalcone synthase(CHS) is the first key rate-limiting enzyme in the biosynthesis of flavonoids in plants. To explore the functions of CHS gene family in chalcone synthesis of L.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China.
Glycosylation is an effective means to alter the structure and properties of plant compounds, influencing the pharmacological activity of natural products (NPs) to obtain highly active NPs. In nature, glucosides are the most widely distributed, while other glycosides such as xylosides are less common and present in lower quantities. This is due to the scarcity of xylosyltransferases with substrate promiscuity in nature, and the modification of their catalytic function is also quite challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!