Selection and optimization of hydrolysis conditions for the quantification of urinary metabolites of MDMA.

J Anal Toxicol

Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 5500 Nathan Shock Drive, Baltimore, Maryland 21224, USA.

Published: October 2006

Recovery of 3,4-methylenedioxymethamphetamine (MDMA) urinary metabolites requires optimization of the hydrolysis of 4-hydroxy-3-methyoxymethamphetamine (HMMA), 4-hydroxy-3-methoxyamphetamine (HMA), and 3,4-methylenedioxyamphetamine (MDA) conjugates prior to chromatographic analysis. Acidic and enzymatic hydrolysis with beta-glucuronidase from Escherichia coli and Helix pomatia were evaluated. Acid hydrolysis yielded 40.0% and 39.3% higher HMA recovery compared to E. coli and H. pomatia hydrolysis, respectively (SE=9.8 and 11.4%). E. coli beta-glucuronidase hydrolysis MDA recovery was 17.1% and 26.5% greater than acid hydrolysis and H. pomatia beta-glucuronidase recovery (SE=3.3 and 6.1%), respectively. HMMA recovery by acid hydrolysis was 336.1% and 159.8% greater than E. coli and H. pomatia beta-glucuronidase (SE=72.8 and 31.6%), respectively. The effects of temperature, time, and acid amount on metabolite recovery were also evaluated. HMA and HMMA acid hydrolysis recoveries were improved at 100 degrees C and above. Effective hydrolysis could be conducted in a dry block heater, GC oven, or autoclave at temperatures from 100 to 140 degrees C. Optimal hydrolysis conditions for the measurement of MDMA metabolite conjugates were addition of 100 microL of hydrochloric acid to 1 mL urine and incubation at 120 degrees C in a GC oven for 40 min. Therefore, based on HMMA, HMA, and MDA recoveries, time efficiency, availability of instrumentation, and cost, acid hydrolysis was preferred to enzyme hydrolysis.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jat/30.8.563DOI Listing

Publication Analysis

Top Keywords

acid hydrolysis
20
hydrolysis
13
optimization hydrolysis
8
hydrolysis conditions
8
urinary metabolites
8
coli pomatia
8
pomatia beta-glucuronidase
8
acid
7
recovery
6
selection optimization
4

Similar Publications

is the leading cause of food poisoning in Europe and North America. The exterior surface of this bacterium is encased by a capsular polysaccharide that is attached to a diacyl glycerol phosphate anchor via a poly-Kdo (3-deoxy-d--oct-2-ulosinic acid) linker. In the HS:2 serotype of NCTC 11168, the repeating trisaccharide consists of d-ribose, -acetyl-d-glucosamine, and d-glucuronate.

View Article and Find Full Text PDF

Acyl fluorides and acyl cations represent typical reactive intermediates in organic reactions, such as Friedel-Crafts acylation. However, the comparatively stable phenyl-substituted compounds have not been fully characterized yet, offering a promising backbone. Attempts to isolate the benzoacylium cation have only been carried out starting from the acyl chloride with weaker chloride-based Lewis acids.

View Article and Find Full Text PDF

Anaerobic digestion (AD) technology offers significant advantages in addressing environmental issues arising from the intensification of livestock production since it enables waste reduction and energy recovery. However, the molecular composition of dissolved organic matter (DOM) and its linkages to microbial biodiversity during the industrial-scale AD process of chicken manure (CM) remains unclear. In this study, the chemical structure of CM digestate-derived DOM was characterized by using multi-spectroscopic techniques and ultrahigh-resolution mass spectrometry, and the microbial composition was detected by using 16S rRNA gene sequencing.

View Article and Find Full Text PDF

Co-products from the frozen fish processing industry often lead to financial losses. Therefore, it is essential to transform these co-products into profitable goods. This study explores the production of fish protein hydrolysates (FPH) from three co-products: the heads and bones of black scabbardfish (), the carcasses of gilthead seabream (), and the trimmings of Nile perch ().

View Article and Find Full Text PDF

Wound healing incurs various challenges, making it an important topic in medicine. Short-chain peptides from fish protein hydrolysates possess wound healing properties that may represent a solution. In this study, perch hydrolysates were produced from perch side steams using a designed commercial complex enzyme via a proprietary pressure extraction technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!