Non-invasive ventilation (NIV) is used to treat acute respiratory failure. Nebulised drugs can be delivered concurrently with NIV or during breaks from ventilatory support. We hypothesised that the amount of nebulised salbutamol inhaled when delivered via bi-level ventilation would be no different to the amount available directly from the same nebuliser. A standard bi-level ventilation circuit was attached to a lung model simulating adult respiration. Drug delivery was compared when salbutamol (5 mg) was nebulised at different positions in the circuit and separately, with no ventilator. The amount of salbutamol contained in various particle size fractions was also determined. Nebuliser position within the NIV circuit was critically important for drug delivery. Optimal delivery of salbutamol occurred with the expiration port between the facemask and nebuliser (647+/-67 micro g). This was significantly better than nebulisation without the ventilator (424+/-61 micro g; P < 0.01). Delivery when the nebuliser was positioned between the facemask and expiration port was 544+/-85 micro g. The amount of salbutamol contained in particles < 5 micro m was significantly increased when the nebuliser was used in conjunction with bi-level ventilation (576+/-60 micro g vs 300+/-43 micro g, P < 0.001). We conclude that nebulised bronchodilator therapy, using a Cirrus jet nebuliser, during bi-level ventilation increases respirable particles likely to be inhaled when the nebuliser is optimally positioned within the circuit.

Download full-text PDF

Source
http://dx.doi.org/10.1211/jpp.58.11.0017DOI Listing

Publication Analysis

Top Keywords

bi-level ventilation
16
nebulised salbutamol
8
non-invasive ventilation
8
drug delivery
8
amount salbutamol
8
salbutamol contained
8
expiration port
8
nebuliser
7
salbutamol
6
ventilation
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!