When conflicting images are presented to the corresponding regions of the two eyes, only one image may be consciously perceived. In binocular rivalry (BR), two images alternate in phenomenal visibility; even a salient image is eventually suppressed by an image of low saliency. Recently, N. Tsuchiya and C. Koch (2005) reported a technique called continuous flash suppression (CFS), extending the suppression duration more than 10-fold. Here, we investigated the depth of this prolonged form of interocular suppression as well as conventional BR and flash suppression (FS) using a probe detection task. Compared to monocular viewing condition, CFS elevated detection thresholds more than 20-fold, whereas BR did so by 3-fold. In subsequent experiments, we dissected CFS into several components. By manipulating the number and timing of flashes with respect to the probe, we found that the stronger suppression in CFS is not due to summation between BR and FS but is caused by the summation of the suppression due to multiple flashes. Our results support the view that CFS is not a stronger version of BR but is due to the accumulated suppressive effects of multiple flashes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1167/6.10.6 | DOI Listing |
Nat Commun
January 2025
State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China.
Interfacial trap-assisted nonradiative recombination hampers the development of metal halide perovskite solar cells (PSCs). Herein, we report a rationally designed universal passivator to realize highly efficient and stable single junction and tandem PSCs. Multiple defects are simultaneously passivated by the synergistic effect of anion and cation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.
As the energy density of lithium-ion batteries (LIBs) increases, the shortened cycle life and the increased safety hazards of LIBs are drawing increasing concerns. To address such challenges, a series of localized high-concentration electrolytes (LHCEs) based on a solvating-solvent mixture of tetramethylene sulfone and trimethyl phosphate and a high flash-point diluent 1H,1H,5H-octafluoropentyl 1,1,2,2-tetrafluoroethyl ether were designed. The LHCEs exhibited nonflammability and greatly suppressed heat release at elevated temperatures, which would potentially improve the safety performance of the LIBs.
View Article and Find Full Text PDFTher Adv Med Oncol
December 2024
Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang 310003, China.
Background: A newly generic microspheres, sustained-release formulation of triptorelin acetate 3.75 mg has been developed.
Objectives: To evaluate the efficacy, pharmacokinetics, and safety of triptorelin 1-month formulation in Chinese patients with prostate cancer.
J Radiat Res
December 2024
Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Recently, ultra-high dose rate (> 40 Gy/s, uHDR; FLASH) radiation therapy (RT) has attracted interest, because the FLASH effect that is, while a cell-killing effect on cancer cells remains, the damage to normal tissue could be spared has been reported. This study aimed to compare the immune-related protein expression on cancer cells after γ-ray, conventionally used dose rate (Conv) carbon ion (C-ion), and uHDR C-ion. B16F10 murine melanoma and Pan02 murine pancreas cancer were irradiated with γ-ray at Osaka University and with C-ion at Osaka HIMAK.
View Article and Find Full Text PDFFront Syst Neurosci
December 2024
Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
Evoked potentials can be used as an intraoperative monitoring measure in neurological surgery. Auditory evoked potentials (AEPs), or specifically brainstem auditory evoked responses (BAERs), are known for being minimally affected by anesthetics, while visually evoked potentials (VEPs) are presumed to be unreliable and easily affected by anesthetics. While many anesthesia trials or intraoperative recordings have provided evidence in support of these hypotheses, the comparisons were always made between AEPs and VEPs recorded sequentially, rather than recorded at the same time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!