The use of high numerical aperture immersion lenses in optical microscopy is compromised by spherical aberrations induced by the refractive index mismatch between the immersion system and the embedding medium of the sample. Especially when imaging >10 micro m deep into the specimen, the refractive index mismatch results in a noticeable loss of image brightness and resolution. A solution to this problem is to adapt the index of the embedding medium to that of the immersion system. Unfortunately, not many mounting media are known that are both index tunable as well as compatible with fluorescence imaging. Here we introduce a nontoxic embedding medium, 2,2'-thiodiethanol (TDE), which, by being miscible with water at any ratio, allows fine adjustment of the average refractive index of the sample ranging from that of water (1.33) to that of immersion oil (1.52). TDE thus enables high resolution imaging deep inside fixed specimens with objective lenses of the highest available aperture angles and has the potential to render glycerol embedding redundant. The refractive index changes due to larger cellular structures, such as nuclei, are largely compensated. Additionally, as an antioxidant, TDE preserves the fluorescence quantum yield of most of the fluorophores. We present the optical and chemical properties of this new medium as well as its application to a variety of differently stained cells and cellular substructures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jemt.20396 | DOI Listing |
Phys Rev Lett
December 2024
Technion, Department of Electrical and Computer Engineering, Haifa 32000, Israel.
We present the concept of time-domain bound states in continuum. We show that a rapid judiciously designed temporal modulation of the refractive index in a spatially homogenous medium gives rise to a bound state in time, embedded in a continuum of wave numbers. Mathematically, these bound states in the continuum are closed form solutions of the Maxwell equations in time and one-dimensional space.
View Article and Find Full Text PDFSoft Matter
January 2025
Faculty of Physics, University of Vienna, Boltzmanngasse 5, Vienna 1090, Austria.
Particle-tracking microrheology probes the rheology of soft materials by accurately tracking an ensemble of embedded colloidal tracer particles. One-particle analysis, which focuses on the trajectory of individual tracers is ideal for homogeneous materials that do not interact with the particles. By contrast, the characterization of heterogeneous, micro-structured materials or those where particles interact directly with the medium requires a two-particle analysis that characterizes correlations between the trajectories of distinct particle pairs.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Computer Science, University of Hertfordshire, Hatfield AL10 9AB, UK.
IEEE 802.11 is one of the most common medium access control (MAC) protocols used in wireless networks. The carrier sense multiple access with collision avoidance (CSMA/CA) mechanisms in 802.
View Article and Find Full Text PDFEval Rev
January 2025
Department of Basic Psychology, University of Valencia. Valencia, Spain.
The foremost index of caregiving quality is child attachment, as supported by attachment theory. Research supports the relevance of early parenting interventions in improving child outcomes in attachment quality to promote public health because of their long-term effects on mental health and functioning. This study aimed at evaluating the impact on both parenting and child outcomes of the Parent-Child Psychological Support Programme® (PCPS), a community-based program individually tailored to parents and their infants during periodic center-based visits to promote attachment security.
View Article and Find Full Text PDFAppl Radiat Isot
January 2025
Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan; Nuclear Science and Technology Development Center, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan. Electronic address:
In clinical boron neutron capture therapy (BNCT), the distribution of dose to a heterogeneous medium that is predicted by a treatment planning system (TPS) should be experimentally validated. A head phantom specifically developed for this purpose is described and demonstrated herein. The cylindrical phantom exhibits distinct regions made from four materials (polymethyl methacrylate, calcium phosphate, air, and boric acid) to approximate a head structure with explicitly defined skin, skull, and brain tissue with a cavity and tumor within.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!