In the present study, we compared poly-L-Asp with poly-L-Glu and poly-D-Glu in vitro and in vivo for their ability to inhibit the GM-induced nephrotoxicity. In vitro, all three polyanions (i) bound GM over a wide range of pH; (ii) displaced GM previously bound to negatively charged phospholipid bilayers at acid pH (i.e. under the conditions prevailing in lysosomes in vivo), and thereby (iii) decreased the inhibitory potency of GM towards lysosomal phospholipase A1. Thus, one was tempted to predict that all three polyanions would have the potential of protecting against AG-induced nephrotoxicity. However, when co-administered to rats with GM, poly-L-Asp and poly-D-Glu completely suppressed the development of lysosomal phospholipidosis, as assessed by biochemical criteria and increased drug accumulation, whereas poly-L-Glu did not offer such protection despite a relatively lower increase in drug accumulation levels. Histoautoradiography also confirmed that poly-L-Asp, but not poly-L-Glu, was a nephroprotectant against the tissue proliferative response induced by GM. Morphologically, poly-L-Asp almost completely and poly-D-Glu totally prevented the accumulation of myeloid bodies in lysosomes. In vitro incubation in the presence of purified lysosomal extracts revealed marked differences in the hydrolysis rate of these peptides (poly-D-Glu:poly-L-Asp:poly-L-Glu = 1:1.2:16.9). Assuming that all three polyanionic peptides are transported and accumulated in lysosomes to the same extent, these results not only suggest that their stability in lysosomes is an essential requisite for protection against lysosomal phospholipidosis, but also strengthen our hypothesis that the site of action of poly-L-Asp is inside the lysosomes but not at the level of the renal membranes. In addition, poly-D-Glu alone or combined with GM induced another type of morphological lesion, not related to AG-induced nephrotoxicity which, to our knowledge, has not yet been described.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000418798 | DOI Listing |
Molecules
November 2024
Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA.
Chemotherapies remain standard therapy for cancers but have limited efficacy and cause significant side effects, highlighting the need for targeted approaches. In the progression of cancer, tumors increase matrix metalloproteinase (MMP) activity. Leveraging and therapeutically redirecting tumor MMPs through activatable cell-penetrating peptide (ACPP) technology offers new approaches for tumor-selective drug delivery and for studying how drug payloads engage the tumor immune microenvironment.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2025
Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering Technion - Israel Institute of Technology, Technion City 320003, Haifa, Israel. Electronic address:
RNA interference, a naturally occurring regulatory mechanism in which small interfering RNA (siRNA) molecules are responsible for the sequence-specific suppression of gene expression, emerged as one of the most promising gene therapies in cancer. In this work, we investigate a microfluidics double self-assembly method based on micellization and polyelectrolyte complex formation for the encapsulation of siRNA targeting the BIRC5 gene, a member of the inhibitor of apoptosis gene family, that codes for survivin a protein of theinhibitorof apoptosis protein family that is involved in triple-negative breast cancer (TNBC) proliferation and metastasis within nanoparticles of an amphiphilic chitosan-graft-poly(methyl methacrylate) copolymer and low-molecular weight dermatan sulfate, a polysaccharide targeting the CD44 receptor overexpressed in this tumor. Nanoparticles are spherical and display a hydrodynamic diameter of ∼ 200 nm, as measured by dynamic light scattering and scanning electron microscopy.
View Article and Find Full Text PDFIntern Med J
December 2024
Department of Haematology, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, South Australia, Australia.
Heparin-induced thrombocytopenia (HIT) is a serious adverse reaction to heparin. Other HIT-like syndromes are increasingly recognised, mediated by antibodies binding to platelet factor 4, with or without identifiable polyanions. The history of heparin exposure is atypical for classical HIT and standard HIT laboratory tests may be negative.
View Article and Find Full Text PDFInt J Pharm
January 2025
Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, Naples 80131, Italy.
Cancer immunotherapy is focused on stimulating the immune system against cancer cells by exploiting immune checkpoint mechanisms. PD-1/PD-L1 is one of the most known immune checkpoints due to the widespread upregulation of the Programmed Death Ligand 1 (PD-L1) transmembrane protein in cancer tissues. Accordingly, taking advantage of the ability of oncolytic adenoviruses (OAd) to specifically infect and kill tumor cells over healthy ones, here, we developed a targeted delivery platform based on OAd to selectively deliver in cancer cells an antisense peptide nucleic acid (PNA) targeting the PD-L1 mRNA.
View Article and Find Full Text PDFNat Commun
October 2024
School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
In mammalian cells, protein condensates underlie diverse cell functions. Intensive synthetic biological research has been devoted to fabricating liquid droplets using de novo peptides/proteins designed from scratch in test tubes or bacterial cells. However, the development of de novo sequences for synthetic droplets forming in eukaryotes is challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!