Wasps apparently develop normally even under extreme thermal conditions, including deserts. We deemed it worthwhile to set up an experiment wherein wasp brood combs containing a full gamut of brood ranging from eggs up to pupae and a few adults were kept in an incubator whose temperature was gradually raised to 45 degrees C, and the response of the disparate brood to such warming was photographed via Infra Red camera. The finding of this experiment showed that for open brood (i.e., eggs, larvae at various instars, and empty cells) the temperature was close to the ambient temperature, but in the silk coated pupae, the temperature was lower than the ambient by up to 4 degrees C. This lower temperature was retained for at least 90 min of incubation. For comparison we evaluated the relative contribution of the pupae to the phenomenon, by warming also a vacant, (i.e., a broodless and silkless comb) in parallel to a comb from which the pupae had been extricated but the silk weave retained and left behind. We found that the totally empty comb heated up under these conditions to nearly 110 degrees C, whereas the silk-containing vacant cells only heated up to about 40 degrees C. These finding are discussed from two aspects, namely the importance for wasps to maintain a constant temperature throughout the pupating process, and the manner in which the silk weave contributes to such a goal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jemt.20388 | DOI Listing |
J Exp Biol
December 2024
Biology Department, The University of Akron, Akron, OH 44325, USA.
Most orb-weaving spiders use static webs that deform only after flying prey hit the webs. However, ray spiders (Theridiosoma gemmosum) pull orb webs into cones that are loaded with enough elastic energy to snap back like slingshots at accelerations of up to 504 m s-2 once released. We test the hypothesis that ray spiders sense vibrations from flying insects to release their webs and capture prey in mid-flight.
View Article and Find Full Text PDFACS Biomater Sci Eng
December 2024
Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan.
Biochimie
October 2024
Department of Radiation Oncology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324002, Zhejiang, China; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China. Electronic address:
Spider silks are desirable multicomponent biomaterials characterized by great tensile strength, extensibility, and biocompatibility. Of all spider silk types, aciniform silk has highest toughness due to its combination of high tensile strength and elsticity. Here, we identify three major spidroin components (AcSp1A, AcSp1B, and AcSp2) from aciniform silk of orbweb weaving spider, Neoscona scylloides, and present their full-length coding gene sequences.
View Article and Find Full Text PDFEvolution
December 2024
Evolutionary Biomechanics, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany.
Spider silk is amongst the toughest materials produced by living systems, but its tensile performance varies considerably between species. Despite the extensive sampling of the material properties and composition of dragline silk, the understanding of why some silks performs better than others is still limited. Here, I adopted a phylogenetic comparative approach to reanalyze structural and mechanical data from the Silkome database and the literature across 164 species to (a) provide an extended model of silk property evolution, (b) test for correlations between structural and mechanical properties, and (c) to test if silk tensile performance differs between web-building and nonweb-building species.
View Article and Find Full Text PDFNanoscale
August 2024
Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada.
Theranostic sutures are derived from innovative ideas to enhance wound healing results by adding wound diagnostics and therapeutics to typical sutures by functionalizing them with additional materials. Here, we present a new direct electrospinning method for the fast, continuous, inexpensive, and high-throughput production of versatile nanofibrous-coated suture threads, with precise control over various essential microstructural and physical characteristics. The thickness of the coating layer and the alignment of nanofibers with the thread's direction can be adjusted by the user by varying the spooling speed and the displacement between the spinneret needle and thread.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!