Reported here is direct imaging (and diffraction) by using 4D ultrafast electron microscopy (UEM) with combined spatial and temporal resolutions. In the first phase of UEM, it was possible to obtain snapshot images by using timed, single-electron packets; each packet is free of space-charge effects. Here, we demonstrate the ability to obtain sequences of snapshots ("movies") with atomic-scale spatial resolution and ultrashort temporal resolution. Specifically, it is shown that ultrafast metal-insulator phase transitions can be studied with these achieved spatial and temporal resolutions. The diffraction (atomic scale) and images (nanometer scale) we obtained manifest the structural phase transition with its characteristic hysteresis, and the time scale involved (100 fs) is now studied by directly monitoring coordinates of the atoms themselves.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1693681 | PMC |
http://dx.doi.org/10.1073/pnas.0609233103 | DOI Listing |
Struct Dyn
January 2025
Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
Sub-ångström spatial resolution of electron density coupled with sub-femtosecond to few-femtosecond temporal resolution is required to directly observe the dynamics of the electronic structure of a molecule after photoinitiation or some other ultrafast perturbation, such as by soft X-rays. Meeting this challenge, pushing the field of quantum crystallography to attosecond timescales, would bring insights into how the electronic and nuclear degrees of freedom couple, enable the study of quantum coherences involved in molecular dynamics, and ultimately enable these dynamics to be controlled. Here, we propose to reach this realm by employing convergent-beam x-ray crystallography with high-power attosecond pulses from a hard-x-ray free-electron laser.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Chemistry, Brown University, Providence, RI, USA.
Disulfide bonds are ubiquitous molecular motifs that influence the tertiary structure and biological functions of many proteins. Yet, it is well known that the disulfide bond is photolabile when exposed to ultraviolet C (UVC) radiation. The deep-UV-induced S─S bond fragmentation kinetics on very fast timescales are especially pivotal to fully understand the photostability and photodamage repair mechanisms in proteins.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California, 95064, USA.
Development of high-performance electrocatalysts for water splitting is crucial for a sustainable hydrogen economy. In this study, rapid heating of ruthenium(III) acetylacetonate by magnetic induction heating (MIH) leads to the one-step production of Ru-RuO₂/C nanocomposites composed of closely integrated Ru and RuO₂ nanoparticles. The formation of Mott-Schottky heterojunctions significantly enhances charge transfer across the Ru-RuO interface leading to remarkable electrocatalytic activities toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in 1 m KOH.
View Article and Find Full Text PDFChemistry
January 2025
Henan Normal University, School of Chemistry and Chemical Engineering, CHINA.
Currently, the development of suitable transition metal chalcogenides (TMDs) for aqueous zinc ion batteries (AZIBs) is plagued by the terrible conductivity and electrochemical properties. Herein, a one-step ball milling method is applied to enhance the conductivity of commercial MnTe cathode by constructing three dimensional (3D) carbon nanotubes (CNTs) interweaved MnTe nanoparticles (abbreviated as MnTe@CNTs), which can achieve ultrafast ion conduction. The stable electrochemistry properties benefit from the synergistic effects between layered MnTe and 3D CNTs, which can improve the electrons/ions diffusion kinetics as cycling.
View Article and Find Full Text PDFNano Lett
January 2025
Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China.
Two-dimensional ferroelectric materials can generate a bulk photovoltaic effect, making them highly promising for self-powered photodetectors. However, their practical application is limited by a weak photoresponse due to a weak transition strength and wide band gap. In this study, we construct a van der Waals heterojunction using NbOI, which has significant in-plane polarization, with a highly absorbing MoSe layer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!