Inactivation of CUG-BP1/CELF1 causes growth, viability, and spermatogenesis defects in mice.

Mol Cell Biol

URA 2578 CNRS Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France.

Published: February 2007

CUG-BP1/CELF1 is a multifunctional RNA-binding protein involved in the regulation of alternative splicing and translation. To elucidate its role in mammalian development, we produced mice in which the Cugbp1 gene was inactivated by homologous recombination. These Cugbp1(-/-) mice were viable, although a significant portion of them did not survive after the first few days of life. They displayed growth retardation, and most Cugbp1(-/-) males and females exhibited impaired fertility. Male infertility was more thoroughly investigated. Histological examination of testes from Cugbp1(-/-) males showed an arrest of spermatogenesis that occurred at step 7 of spermiogenesis, before spermatid elongation begins, and an increased apoptosis. A quantitative reverse transcriptase PCR analysis showed a decrease of all the germ cell markers tested but not of Sertoli and Leydig markers, suggesting a general decrease in germ cell number. In wild-type testes, CUG-BP1 is expressed in germ cells from spermatogonia to round spermatids and also in Sertoli and Leydig cells. These findings demonstrate that CUG-BP1 is required for completion of spermatogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1800704PMC
http://dx.doi.org/10.1128/MCB.01009-06DOI Listing

Publication Analysis

Top Keywords

cugbp1-/- males
8
decrease germ
8
germ cell
8
sertoli leydig
8
inactivation cug-bp1/celf1
4
cug-bp1/celf1 growth
4
growth viability
4
viability spermatogenesis
4
spermatogenesis defects
4
defects mice
4

Similar Publications

Noncoding Vault RNA1-1 Impairs Intestinal Epithelial Renewal and Barrier Function by Interacting With CUG-binding Protein 1.

Cell Mol Gastroenterol Hepatol

December 2024

Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland; Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland. Electronic address:

Article Synopsis
  • The study investigates the role of small noncoding vault RNA (vtRNA1-1) in the intestinal epithelium, focusing on its impact on epithelial renewal and barrier function.
  • It found that elevated levels of vtRNA1-1 are associated with mucosal injury and increased gut permeability in shock patients and septic mice, indicating a negative effect on intestinal health.
  • The research also suggests that vtRNA1-1 inhibits the expression of key proteins involved in gut barrier function by interacting with CUG-binding protein 1 (CUGBP1), highlighting a potential mechanism for gut mucosal disruption in critical illness.
View Article and Find Full Text PDF

Background: Hepatic fibrosis (HF) is an essential stage in the progression of different chronic liver conditions to cirrhosis and even hepatocellular carcinoma. The activation of hepatic stellate cells (HSCs) plays a crucial role in the progression of HF. IFN- γ/Smad7 pathway can inhibit HSCs activation, while TGF-β1/CUGBP1 pathway can inhibit IFN-γ/Smad7 pathway transduction and promote HSCs activation.

View Article and Find Full Text PDF

Fraxinellone alleviates kidney fibrosis by inhibiting CUG-binding protein 1-mediated fibroblast activation.

Toxicol Appl Pharmacol

June 2021

State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China. Electronic address:

Chronic Kidney Disease (CKD) is a serious threat to human health. In addition, kidney fibrosis is a key pathogenic intermediate for the progression of CDK. Moreover, excessive activation of fibroblasts is key to the development of kidney fibrosis and this process is difficult to control.

View Article and Find Full Text PDF

A Novel Role of SLC26A3 in the Maintenance of Intestinal Epithelial Barrier Integrity.

Gastroenterology

March 2021

Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois; Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois. Electronic address:

Background & Aims: The down-regulated in adenoma (DRA) protein, encoded by SLC26A3, a key intestinal chloride anion exchanger, has recently been identified as a novel susceptibility gene for inflammatory bowel disease (IBD). However, the mechanisms underlying the increased susceptibility to inflammation induced by the loss of DRA remain elusive. Compromised barrier is a key event in IBD pathogenesis.

View Article and Find Full Text PDF

Myeloid-derived suppressor cells (MDSCs) contribute to high mortality rates during sepsis, but how sepsis induces MDSCs is unclear. Previously we reported that microRNA (miR)-21 and miR-181b reprogram MDSCs in septic mice by increasing levels of DNA binding transcription factor, nuclear factor 1 (NFI-A). Here, we provide evidence that miR-21 and miR-181b stabilize NFI-A mRNA and increase NFI-A protein levels by recruiting RNA-binding proteins HuR and Ago1 to its 3' untranslated region (3'UTR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!