In recent years, it has become clear that the polarization of T cells depends on the genetic background. However, due to the complexity of the genetic background of each animal, a direct comparison of the phenotype is difficult. In this study, a new rat strain LEW.BN-4-10 carrying the chromosomal regions on chromosomes 4 and 10, which harbor IL-6 and IL-4 gene clusters of BN, has been bred on the genetic background of LEW. It was asked whether these two gene clusters influence the polarization of T cell responses. As a model, the Mycoplasma arthritidis mitogen (MAM)-induced inflammation was used focusing on the microenvironment of the draining lymph node (LN). The effect of differences in these regions was tested by comparing LEW.BN-4-10 and LEW rats under steady-state conditions and upon injection of MAM into the forepaw. Under steady-state conditions, the two strains showed differences in the dendritic cell (DC) subset composition. When MAM was injected, the number of T cells in LEW.BN-4-10 rats producing T(h)2 cytokines such as IL-4 and IL-13 was significantly increased compared with LEW. The data suggest that these differences in the microenvironments in LN of LEW and LEW.BN-4-10 rats resulted in different susceptibility to the disease (increase of cells in LN and paw swelling). In addition, deviations in the distribution and function of injected effector T cells were found in the LN of LEW and LEW.BN-4-10 rats after MAM treatment. The data indicate that the IL-6 and IL-4 gene clusters are involved in polarizing T cell responses in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/intimm/dxl124 | DOI Listing |
Funct Integr Genomics
January 2025
Institute of Infectious Diseases, Guangdong Province, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China.
Hepatocellular carcinoma (HCC) remains a malignant and life-threatening tumor with an extremely poor prognosis, posing a significant global health challenge. Despite the continuous emergence of novel therapeutic agents, patients exhibit substantial heterogeneity in their responses to anti-tumor drugs and overall prognosis. The pentose phosphate pathway (PPP) is highly activated in various tumor cells and plays a pivotal role in tumor metabolic reprogramming.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China.
Background: Chronic inflammation is well recognized as a key factor related to renal function deterioration in patients with diabetic kidney disease (DKD). Neutrophil extracellular traps (NETs) play an important role in amplifying inflammation. With respect to NET-related genes, the aim of this study was to explore the mechanism of DKD progression and therefore identify potential intervention targets.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China.
The mitochondrial voltage-dependent anion channel (VDAC) is the major channel in the mitochondrial outer membrane for metabolites and ions. VDACs also regulate a variety of biological processes, which vary in the number of VDAC isoforms across different eukaryotes. However, little is known about VDAC-mediated biocontrol traits in biocontrol fungi.
View Article and Find Full Text PDFGenes Dev
December 2024
Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
The gene-regulatory mechanisms controlling the expression of the germline PIWI-interacting RNA (piRNA) pathway components within the gonads of metazoan species remain largely unexplored. In contrast to the male germline piRNA pathway, which in mice is known to be activated by the testis-specific transcription factor A-MYB, the nature of the ovary-specific gene-regulatory network driving the female germline piRNA pathway remains a mystery. Here, using as a model, we combined multiple genomics approaches to reveal the transcription factor Ovo as regulator of the germline piRNA pathway in ovarian germ cells.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China.
Inducible systems are crucial to metabolic engineering and synthetic biology, enabling organisms that function as biosensors and produce valuable compounds. However, almost all inducible systems are strain-specific, limiting comparative analyses and applications across strains rapidly. This study designed and presented a robust workflow for developing the cross-species inducible system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!