Properties of PtRu nanoparticles prepared using high-intensity sonochemistry are reported. Syntheses were carried out in tetrahydrofuran (THF) containing Ru3+ and Pt4+ in a fixed mole ratio of either 1:10 or 1:1. X-ray diffraction measurements confirmed sonocation produces an alloy phase and showed that the composition of the nanometer scale metal particles is close to the mole fraction of Ru3+ and Pt4+ in solution with deviations that tend toward Ru enrichment in the alloy phase. The materials gave responses that are similar in terms of peak potential and current density, referenced to the catalyst active surface area, to those of bulk alloys in voltammetry experiments involving CO stripping and CH3OH electrochemical oxidation in 0.1 M H2SO4. The results show that sonochemical methods have the potential to produce nanometer scale bimetallic electrocatalysts that possess alloy properties. The materials have application in mechanistic studies of fuel cell reactions and as platforms for the development of CO tolerant fuel cell catalyst.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la061274o | DOI Listing |
Sci Rep
January 2025
Department of Mechanical Engineering, Faculty of Engineering, Suez University, P.O.Box: 43221, Suez, Egypt.
This work examines the effects of Nb and Nb-B additives on the high-temperature flow behavior and mechanical properties of low-carbon steel. The base, 0.015% Nb-bearing (15Nb alloy), and 0.
View Article and Find Full Text PDFTalanta
December 2024
School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India. Electronic address:
The electrochemical biosensor has brought a paradigm shift in the field of sensing due to its fast response and easy operability. The performance of electrochemical sensors can be modified by coupling them with various metal oxides, nanomaterials, and nanocomposites. Hydrogen peroxide is a short-lived reactive oxygen species that plays a crucial role in various physiological and biological processes.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Condensed Matter Physics, Saha Institute of Nuclear Physics, Sector 1, Block AF, Bidhannagar, Kolkata 700 064, Kolkata, West Bengal, 700064, INDIA.
β-Mn-type chiral cubic CoxZnyMnz (x + y + z = 20) alloys present a intriguing platform for exploring topological magnetic orderings with promising spintronic potential. This study examines the magnetotransport properties of Co6.5Ru1.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
University of Science and Technology Beijing, No. 30, Xueyuan Road, Haidian District, Beijing, 100083, CHINA.
Boron nitride (BN), renowned for its exceptional optoelectrical properties, mechanical robustness, and thermal stability, has emerged as a promising two-dimensional (2D) material. Reinforcing AZ80 magnesium alloy with BN can significantly enhance its mechanical properties. To investigate and predict this enhancement during hot deformation, we introduce two independent modeling approaches a modified Johnson-Cook (J-C) constitutive model and an Artificial Neural Network (ANN).
View Article and Find Full Text PDFSci Adv
January 2025
Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, China.
Vacancies are crucial for the radiation resistance, strength, and ductility of high-entropy alloys (HEAs). However, complex electronic interactions resulting from chemical disorder prohibit the quantification of vacancy formation energy () and migration barriers (). Herein, we propose an electronic descriptor χ (electronegativity χ and valence-electron number ) to quantify the bonding strength of constituents on the basis of the tight-binding model, which allows us to build analytical models to achieve the site-to-site quantification of and .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!