Oxidative aromatization of 4-alkyl or aryl and heterocyclic-substituted derivatives of Hantzsch 1,4-dihydropyridines to the corresponding pyridine derivatives has been studied using benzyltriphenylphosphonium peroxymonosulfate as an oxidant in the presence of BiCl(3) under nearly neutral reaction conditions at ambient temperature.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2006.11.033DOI Listing

Publication Analysis

Top Keywords

oxidative aromatization
8
hantzsch 14-dihydropyridines
8
benzyltriphenylphosphonium peroxymonosulfate
8
neutral reaction
8
reaction conditions
8
convenient efficient
4
efficient protocol
4
protocol oxidative
4
aromatization hantzsch
4
14-dihydropyridines benzyltriphenylphosphonium
4

Similar Publications

Introduction: Antimicrobial resistance and free radical-mediated oxidative stress and inflammation involved in many pathological processes have become treatment challenges. One strategy is to search for antimicrobial and antioxidant ingredients from natural aromatic plants. This study established a rapid and high-throughput effect-component analysis method to screen active ingredients from Ligusticum chuanxiong essential oil (CXEO).

View Article and Find Full Text PDF

Phenanthrene toxicity during early development of the neotropical tree frog Dendropsophus branneri.

Aquat Toxicol

January 2025

Programa de Pós-Graduação em Biologia Animal, Centro de Biociências, Universidade Federal de Pernambuco, Av. Professor Moraes Rego, S/N - Cidade Universitária, Recife 50670-420, Brazil; Aquatic Ecotoxicology Laboratory, Centro de Biociências, Departamento de Zoologia, Universidade Federal de Pernambuco, Av. Professor Moraes Rego, S/N - Cidade Universitária, Recife 50670-420, Brazil. Electronic address:

Phenanthrene is considered a priority polycyclic aromatic hydrocarbon due to its ubiquitous presence in aquatic and terrestrial environments and its toxic potential. Tadpoles are sensitive ecotoxicological models that provide important information regarding effects of contaminants in amphibian species. The goal of the present study was to generate information regarding the acute and chronic toxicity of phenanthrene to the neotropical tree frog Dendropsophus branneri early life stages.

View Article and Find Full Text PDF

A Non-Benzenoid Route to Thio-Oxybenzone Analogs: Superior UV Protection with Reduced Cytotoxicity.

Chem Asian J

January 2025

Indian Institute of Science Education and Research Thiruvananthapuram, chemistry, 2204, School of Chemistry, Vithura, 695551, Thiruvananthapuram, INDIA.

A one-pot methodology for the tandem acylation and oxidative aromatization of vinylogous thioesters to 2-acyl-5-(alkyl/arylthio)phenols is presented. Initially, cyclohexane-1,3-diones were converted to vinylogous thioesters through FeCl3-mediated thioenolization. This was followed by LiTMP-mediated acylation and DDQ-mediated aromatization, which resulted in the synthesis of sulphur derived oxybenzone analogs.

View Article and Find Full Text PDF

Atomically precise metal nanoclusters (NCs) have recently been recognized as an emerging sector of metal nanomaterials but suffer from light-induced poor stability, giving rise to the detrimental self-transformation into metal nanocrystals (NYs), losing the photosensitization effect and ultimately retarding their widespread applications in photoredox catalysis. Are metal NCs definitely superior to metal NYs in heterogeneous photocatalysis in terms of structural merits? To unlock this mystery, herein, we conceptually demonstrate how to rationally manipulate the instability of metal NCs to construct high-efficiency artificial photosystems and examine how the metal NYs self-transformed from metal NCs influence charge transfer in photoredox selective organic transformation. To our surprise, the results indicate that the Schottky-type electron-trapping ability of Au NYs surpasses the photosensitization effect of glutathione (GSH)-protected Au clusters [Au(GSH) NCs] in mediating charge separation and enhancing photoactivities towards selective photoreduction of aromatic nitro compounds to amino derivatives and photocatalytic oxidation of aromatic alcohols to aldehydes under visible light irradiation.

View Article and Find Full Text PDF

Adaptable Blueprint for Non-metal Near-Infrared Organic Photocatalysts by Aromatic Sulfones.

ACS Appl Mater Interfaces

January 2025

Graduate School of Environmental Science, Hokkaido University, N10, W5, Sapporo 060-0810, Japan.

We present a versatile approach to designing and utilizing high-performance nonmetal near-infrared (NIR) organic photocatalysts based on aromatic sulfones. Current NIR photocatalysts are mainly metal complexes and inorganic materials, while the few reported nonmetal organic NIR photocatalysts primarily use photosensitization to produce active species such as singlet oxygen. Our sulfone-rosamine-based redox photocatalyst demonstrates exceptional capabilities, including high ability for metal-free photo-oxidative bromination, intrinsically oxygen-independent redox reactions, and remarkable photostability with a turnover number (TON) exceeding 2800.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!