Modulation of CD36 protein expression by AGEs and insulin in aortic VSMCs from diabetic and non-diabetic rats.

Nutr Metab Cardiovasc Dis

Laboratoire de Nutrition Humaine et Athérogénèse (LNHA), EA 2993, Institut Universitaire de Recherche Clinique, Université Montpellier I, 641 Avenue du Doyen Giraud, 34093 Montpellier, France.

Published: January 2008

Background And Aim: In type 2 diabetes, the interplay between cells and inflammatory mediators up-regulates CD36 expression in macrophages. The aim of this work was to investigate advanced glycation end products (AGE)-induced CD36 expression and its regulation by insulin in aortic vascular smooth muscle cells (VSMCs) from Goto-Kakisaki (GK) rats, a non-obese insulin model of both insulin resistance and type 2 diabetes. The context of overexpression of CD36 in aortas was also evaluated.

Methods And Results: VSMCs were isolated and cultured from the aortas of GK rats and non-diabetic rats. The expression of proteins was evaluated by Western blot. The aortic production of superoxide anion (O(2)(.-)) was measured by luminescence on isolated tissue. AGEs and advanced oxidation protein products (AOPPs) were determined in plasma by fluorescence spectroscopy and spectrophotometry, respectively. AGE receptor (RAGE), NF-kappaB, and CD36 protein expression as well as O(2)(.-) production were higher in GK aortas than in control aortas, and AGEs and AOPPs were higher in GK plasma. In VSMCs from non-diabetic rats, insulin was able to reduce (10 nM) or suppress (100 nM) the protein overexpression of CD36 induced by AGEs-BSA. In contrast, in VSMCs from GK rats, insulin was unable to reduce AGEs-BSA-induced CD36 overexpression.

Conclusions: The results suggest an overexpression of CD36 in VSMCs from GK rats and impaired control by insulin. In the context of increased plasma AGEs, aortic RAGE overexpression and increased oxidative stress markers, the data are compatible with an AGEs induced CD36 overexpression in diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.numecd.2006.07.008DOI Listing

Publication Analysis

Top Keywords

non-diabetic rats
12
overexpression cd36
12
cd36 protein
8
protein expression
8
insulin aortic
8
type diabetes
8
cd36
8
cd36 expression
8
rats insulin
8
vsmcs rats
8

Similar Publications

Background: This study aimed to evaluate the effects of 4-hexylresorcinol (4HR), a synthetic compound with antioxidant and stress-modulating properties, on diabetic sarcopenia in the masseter muscle.

Methods: A controlled, parallel-arm study was conducted using 38 Sprague-Dawley rats divided into diabetic and non-diabetic groups. Diabetes was induced with streptozotocin (STZ), and the groups were further subdivided to receive weekly subcutaneous injections of either 4HR or saline.

View Article and Find Full Text PDF

Background: Diabetes is known to cause cognitive impairments and synaptic dysfunction. This study investigates the effects of (EO), (CT), Vitamin C, and metformin on cognitive function and synaptic density (SYN) in diabetic rats. This work aims to evaluate the impact of various treatments on spatial learning, memory, and SYN in a diabetic rat model.

View Article and Find Full Text PDF

Background: Asprosin, a novel adipokine released under fasting conditions, may play a significant role in the pathophysiology of type 2 diabetes mellitus (T2DM). The objective of this study is to investigate the effects of metformin on serum asprosin levels and FBN1 gene expression in white adipose tissue in male rats.

Methods: Thirty-two male Wistar rats were randomly and equally divided into four groups (n = 8): 1.

View Article and Find Full Text PDF

Objectives: The current experiment was conducted to investigate the combined effect of levofloxacin (LVX) and metformin treatment on blood glucose levels, malondialdehyde (MDA),nitrite levels, and anxiety in streptozotocin (STZ)+ nicotine adenine dinucleotide (NAD)-induced diabetic rats.

Materials And Methods: In this study, Wistar rats have been used. After receiving a single dose of STZ + NAD (45 mg/kg, + 50 mg/kg, ), the rats developed diabetes.

View Article and Find Full Text PDF

The Kynurenine pathway is crucial in metabolizing dietary tryptophan into bioactive compounds known as kynurenines, which have been linked to glucose homeostasis. The aryl hydrocarbon receptor (AhR) has recently emerged as the endogenous receptor for the kynurenine metabolite, kynurenic acid (KYNA). However, the specific role of AhR in pancreatic β-cells remains largely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!