Low-voltage cross-sectional EBIC for characterisation of GaN-based light emitting devices.

Ultramicroscopy

Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK.

Published: March 2007

Electron beam induced current (EBIC) characterisation can provide detailed information on the influence of crystalline defects on the diffusion and recombination of minority carriers in semiconductors. New developments are required for GaN light emitting devices, which need a cross-sectional approach to provide access to their complex multi-layered structures. A sample preparation approach based on low-voltage Ar ion milling is proposed here and shown to produce a flat cross-section with very limited surface recombination, which enables low-voltage high resolution EBIC characterisation. Dark defects are observed in EBIC images and correlation with cathodoluminescence images identify them as threading dislocations. Emphasis is placed on one-dimensional quantification which is used to show that junction delineation with very good spatial resolution can be achieved, revealing significant roughening of this GaN p-n junction. Furthermore, longer minority carrier diffusion lengths along the c-axis are found at dislocation sites, in both p-GaN and the multi-quantum well (MQW) region. This is attributed to gettering of point defects at threading dislocations in p-GaN and higher escape rate from quantum wells at dislocation sites in the MQW region, respectively. These developments show considerable promise for the use of low-voltage cross-sectional EBIC in the characterisation of point and extended defects in GaN-based devices and it is suggested that this technique will be particularly useful for degradation analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultramic.2006.10.002DOI Listing

Publication Analysis

Top Keywords

ebic characterisation
16
low-voltage cross-sectional
8
cross-sectional ebic
8
light emitting
8
emitting devices
8
threading dislocations
8
dislocation sites
8
mqw region
8
ebic
5
low-voltage
4

Similar Publications

Better techniques for imaging ferroelectric polarization would aid the development of new ferroelectrics and the refinement of old ones. Here we show how scanning transmission electron microscope (STEM) electron beam-induced current (EBIC) imaging reveals ferroelectric polarization with obvious, simply interpretable contrast. Planar imaging of an entire ferroelectric hafnium zirconium oxide (HfZrO, HZO) capacitor shows an EBIC response that is linearly related to the polarization determined with the positive-up, negative-down (PUND) method.

View Article and Find Full Text PDF

Telomeres, the ends of eukaryotic chromosomes, play pivotal parts in ageing and cancer and are targets of DNA damage and the DNA damage response. Little is known about the structure of telomeric chromatin at the molecular level. Here we used negative stain electron microscopy and single-molecule magnetic tweezers to characterize 3-kbp-long telomeric chromatin fibres.

View Article and Find Full Text PDF

Laser scanning optical beam induced current (OBIC) microscopy has become a powerful and nondestructive alternative to other complicated methods like electron beam induced current (EBIC) microscopy, for high resolution defect analysis of electronic devices. OBIC is based on the generation of electron-hole pairs in the sample due to the raster scanning of a focused laser beam with energy equal or greater than the band gap energy and synchronized detection of resultant current profile with respect to the beam positions. OBIC is particularly suitable to localize defect sites caused by metal-semiconductor interdiffusion or electrostatic discharge (ESD).

View Article and Find Full Text PDF

Modeling of the electron beam induced current signal in nanowires with an axial p-n junction.

Nanotechnology

July 2022

Centre de Nanosciences et de Nanotechnologies (C2N), CNRS UMR 9001, University Paris-Saclay, F-91120 Palaiseau, France.

A tridimensional mathematical model to calculate the electron beam induced current (EBIC) of an axial p-n nanowire junction is proposed. The effect of the electron beam and junction parameters on the distribution of charge carriers and on the collected EBIC current is reported. We demonstrate that the diffusion of charge carriers within the wire is strongly influenced by the electrical state of its lateral surface which is characterized by a parameter called surface recombination velocity ().

View Article and Find Full Text PDF

Graphene-based devices hold promise for a wide range of technological applications. Yet characterizing the structure and the electrical properties of a material that is only one atomic layer thick still poses technical challenges. Recent investigations indicate that secondary-electron electron-beam-induced current (SE-EBIC) imaging can reveal subtle details regarding electrical conductivity and electron transport with high spatial resolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!