Dosimetric validation of the MCNPX Monte Carlo simulation for radiobiologic studies of megavoltage grid radiotherapy.

Int J Radiat Oncol Biol Phys

Department of Radiation Medicine, The Ohio State University, Columbus, OH 43210--1228, USA.

Published: December 2006

Purpose: To validate the MCNPX Monte Carlo simulation for radiobiologic studies of megavoltage grid radiotherapy.

Methods And Materials: EDR2 films, a scanning water phantom with microionization chamber and MCNPX Monte Carlo code, were used to study the dosimetric characteristics of a commercially available megavoltage grid therapy collimator. The measured dose profiles, ratios between maximum and minimum doses at 1.5 cm depth, and percentage depth dose curve were compared with those obtained in the simulations. The simulated two-dimensional dose profile and the linear-quadratic formalism of cell survival were used to calculate survival statistics of tumor and normal cells for the treatment of melanoma with a list of doses of the fractionated grid therapy.

Results: A good agreement between the simulated and measured dose data was found. The therapeutic ratio based on normal cell survival has been defined and calculated for treating both the acute and late responding melanoma tumors. The grid therapy in this study was found to be advantageous for treating the acutely responding tumors, but not for late responding tumors.

Conclusions: Monte Carlo technique was demonstrated to be able to provide the dosimetric characteristics for grid therapy. The therapeutic ratio was dependent not only on the single alpha/beta value, but also on the individual alpha and beta values. Acutely responding tumors and radiosensitive normal tissues are more suitable for using the grid therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijrobp.2006.08.059DOI Listing

Publication Analysis

Top Keywords

monte carlo
16
grid therapy
16
mcnpx monte
12
megavoltage grid
12
carlo simulation
8
simulation radiobiologic
8
radiobiologic studies
8
studies megavoltage
8
dosimetric characteristics
8
measured dose
8

Similar Publications

In various scenarios where products and services are accompanied by warranties to ensure their reliability over a specified time, the two-parameter (shifted) exponential distribution serves as a fundamental model for time-to-event data. In modern production process, the products often come with warranties, and their quality can be manifested by the changes in the scale and origin parameters of a shifted exponential (SE) distribution. This paper introduces the Max-EWMA chart, employing maximum likelihood estimators and exponentially weighted moving average (EWMA) statistics, to jointly monitor SE distribution parameters.

View Article and Find Full Text PDF

Numerous studies have solved the problem of monitoring statistical processes with complete samples. However, censored or incomplete samples are commonly encountered due to constraints such as time and cost. Adaptive progressive Type II hybrid censoring is a novel method with the advantages of saving time and improving efficiency.

View Article and Find Full Text PDF

The principle of independence is a fundamental yet often disregarded assumption in statistical inference. It is observed that the implications of correlations, if not considered, can lead to a conservative estimation of Type I error in the presence of positive linear correlations when utilizing the Kolmogorov-Smirnov (KS) test. Conversely, negative linear correlations may engender a liberal estimation of Type I error.

View Article and Find Full Text PDF

A Comprehensive Assessment of the Marginal Abatement Costs of CO of Co-Optima Multi-Mode Vehicles.

Energy Fuels

January 2025

Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States.

The Co-Optimization of Fuels and Engines (Co-Optima) is a research and development consortia funded by the U.S. Department of Energy, which has engaged partners from national laboratories, universities, and industry to conduct multidisciplinary research at the intersection of biofuels and combustion sciences.

View Article and Find Full Text PDF

Studies intended to estimate the effect of a treatment, like randomized trials, may not be sampled from the desired target population. To correct for this discrepancy, estimates can be transported to the target population. Methods for transporting between populations are often premised on a positivity assumption, such that all relevant covariate patterns in one population are also present in the other.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!