Flavone Acetic Acid (FAA) exerts much of its effect by reducing tumour blood flow. Previous studies on FAA-induced changes in blood flow have used established tumours with a functional microvasculature. Using radioactive Xenon(133Xe) clearance to monitor local blood flow we show that the effects of FAA are dependent on the presence of this functional microvasculature with no evidence that FAA inhibits the actual development of tumour microcirculation. Thus, administration of multiple doses of FAA around the time of tumour cell injection failed to diminish t1/2 values of 133Xe (e.g. t1/2 16 min for FAA vs 14 min for saline controls at 10 days) or to affect tumour volumes (5.55 +/- 0.06 cm3 in FAA-treated animals vs 5.7 +/- 1.3 cm3 in controls at 25 days). In marked contrast a single dose of FAA (200 mg kg-1 body weight) 2 weeks after tumour cell injection dramatically extended t1/2 times (47 min for FAA vs 7 min for controls; P less than 0.001) and significantly reduced tumour burden. This effect is specific for tumour microvasculature and is not directed simply at new vessels since a similar treatment of animals with implanted-sponge-induced granulation tissue had no effect on t1/2 times (6.8 +/- 1.1 min for FAA at 200 mg kg-1 vs 7.2 +/- 1.0 min for saline-treated controls.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1972550 | PMC |
http://dx.doi.org/10.1038/bjc.1991.195 | DOI Listing |
Alzheimers Dement
December 2024
Merry Life Biomedical Company, Ltd., Tainan City, Taiwan, Taiwan.
Background: Alzheimer's disease (AD) is complex in pathogenesis and related to aging biology, especially in late-onset AD. We identified a novel synthetic curcumin analog TML-6 through the platform of 6 biomarkers of anti-aging, anti-inflammation, and anti-Aβ as the potential AD drug candidate. TML-6 exhibits multi-target effects on AD pathogenesis, including the activation of NrF-2, the regulation of autophagic machinery through mTOR, the inhibition of APP synthesis and reduction of Aβ, the upregulation of ApoE, and the inhibition of microglial activation.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Weill Cornell Medicine, New York City, NY, USA.
Background: Early detection of Alzheimer's disease (AD) can improve prognosis, given new anti-amyloid therapies. Both positron emission tomography (PET) and magnetic resonance (MR) imaging biomarkers are currently used (1). 48F-Fluorodeoxyglucose-PET (FDG-PET) can detect neurodegeneration-related hypometabolism but is costly and not easily accessible (2).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Tulane University, New Orleans, LA, USA.
Background: Vascular dementia (VaD), the second most common cause of dementia, is characterized by cognitive decline due to reduced cerebral blood flow and blood-brain barrier disruption. Current evidence demonstrates that not only are VaD patients at higher risk of severe COVID-19 illness and mortality, but also that pre-existing cognitive dysfunction/dementia is associated with increased COVID-19 incidence. Conversely, SARS-CoV-2 infection alone worsens dementia-related mild cognitive impairment (MCI) and increases risk of cognitive decline, supported by similar fMRI findings demonstrating hypoperfusion.
View Article and Find Full Text PDFActa Cardiol
January 2025
The Cadre Medical Department, Guizhou Provincial People's Hospital, Guiyang, China.
Objective: Elevated systolic blood pressure and increased pulse pressure are closely associated with renal damage; however, the exact mechanism remains unclear. Therefore, we investigated the effects of increased pulse pressure on tubulointerstitial fibrosis and renal damage in elderly rats with isolated systolic hypertension (ISH). Additionally, the role of renal tubular epithelial-mesenchymal transition (EMT) and its upstream signalling pathways were elucidated.
View Article and Find Full Text PDFCurr Pharm Des
January 2025
Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
Introduction: Taohong Siwu decoction (THSWD), a traditional prescription for enhancing blood circulation and eliminating blood stasis, primarily comprises peach kernel, safflower, angelica, chuanxiong, and rehmannia. Modified Taohong Siwu decoction (MTHSWD), an advanced version of THSWD, incorporates additional ingredients such as epimedium, cinnamon, and salvia miltiorrhiza. This addition serves to augment its efficacy in warming yang and promoting blood circulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!