AI Article Synopsis

  • The study investigates how calcium signaling in liver cells (hepatocytes) changes during the regeneration process after partial tissue loss.
  • At specific time points after liver surgery, researchers found that the liver cells responded less effectively to signals that usually raise calcium levels, indicating a phase of desensitization.
  • This desensitization involved a decrease in certain receptors and alterations in calcium release patterns, linking these changes to the cells moving into a growth phase of their cycle.

Article Abstract

Background/aims: During liver regeneration, a network of cytokines and growth factors interact with hepatocytes, helping to restore the liver mass and functions after partial tissue loss. Agonists that trigger Ca2+ signals in the liver contribute to this process, although little is known about calcium signalling during liver regeneration.

Results: We observed two phases in which the hepatocyte response to calcium-mobilising agonists was greatly reduced versus control cells at 24h and five days after partial hepatectomy. We found that both phases of hepatocyte desensitisation involved the down-regulation of cell surface receptors and the type II InsP3 receptor. Single cell studies with flash photolysis of caged InsP3 revealed that InsP3-mediated Ca2+ release was slower in regenerating hepatocytes at 24, 48 h and 5 days than in control cells. Also, the temporal pattern of vasopressin-elicited intracellular calcium oscillations studied on fura2-loaded cells was altered, with the duration of each Ca2+ peak being longer. Finally, we showed an association between hepatocyte desensitisation and progression through the cell cycle towards the S phase at 24 h after hepatectomy.

Conclusions: Our study supports the remodelling of hepatocyte calcium signalling during liver regeneration, and that this change is partly linked with cell cycle progression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhep.2006.08.014DOI Listing

Publication Analysis

Top Keywords

calcium signalling
12
signalling liver
12
liver regeneration
12
phases hepatocyte
8
control cells
8
hepatocyte desensitisation
8
cell cycle
8
liver
6
remodelling calcium
4
regeneration rat
4

Similar Publications

Astrocytes from different brain regions respond with Ca elevations to the catecholamine norepinephrine (NE). However, whether this noradrenergic-mediated signaling is present in astrocytes from the ventral tegmental area (VTA), a dopaminergic circuit receiving noradrenergic inputs, has not yet been investigated. To fill in this gap, we applied a pharmacological approach along with two-photon microscopy and an AAV strategy to express a genetically encoded calcium indicator in VTA astrocytes.

View Article and Find Full Text PDF

Neurological disorders (NDs), such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and schizophrenia, represent a complex and multifaceted health challenge that affects millions of people around the world. Growing evidence suggests that disrupted neuronal calcium signalling contributes to the pathophysiology of NDs. Additionally, calcium functions as a ubiquitous second messenger involved in diverse cellular processes, from synaptic activity to intercellular communication, making it a potential therapeutic target.

View Article and Find Full Text PDF

Introduction: Neuroinflammation derived from the activation of the microglia is considered a vital pathogenic factor of Alzheimer's Disease (AD). T-006, a tetramethylpyrazine derivative, has been found to alleviate cognitive deficits via inhibiting tau expression and phosphorylation in AD transgenic mouse models. Recently, T-006 has been proven to dramatically decrease the levels of total Amyloid β (Aβ) peptide and Glial Fibrillary Acidic Protein (GFAP) and suppress the expression of ionized calcium binding adaptor molecule-1 (Iba-1) in APP/PS1 mice.

View Article and Find Full Text PDF

Cell surface proteins (surfaceome) represent key signalling and interaction molecules for therapeutic targeting, biomarker profiling and cellular phenotyping in physiological and pathological states. Here, we employed coronary artery perfusion with membrane-impermeant biotin to label and capture the surface-accessible proteome in the neo-native (intact) heart. Using quantitative proteomics, we identified 701 heart cell surfaceome accessible by the coronary artery, including receptors, cell surface enzymes, adhesion and junctional molecules.

View Article and Find Full Text PDF

This review comprehensively explores the critical role of calcium as an essential small-molecule biomessenger in skeletal muscle function. Calcium is vital for both regulating muscle excitation-contraction coupling and for the development, maintenance, and regeneration of muscle cells. The orchestrated release of calcium from the endoplasmic reticulum (ER) is mediated by receptors such as the ryanodine receptor (RYR) and inositol 1,4,5-trisphosphate receptor (IP3R), which is crucial for skeletal muscle contraction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!