Previously, 4-alkyl and 4-aryl substituted analogues of the low-efficacy partial GABA(A) receptor agonist 5-(4-piperidyl)-3-isothiazole (4-PIOL) have been identified as competitive GABA(A) receptor antagonists. These structurally related competitive antagonists show marked differences in their kinetic properties. The kinetics of 20 4-alkyl and 4-aryl substituted analogues of 4-PIOL, two 4-arylalkyl substituted 3-isothiazolol analogues and the classical GABA(A) receptor antagonist SR95531 was studied in cultured cerebral cortical neurons using whole-cell patch-clamp techniques. The kinetics of the antagonists was studied indirectly by measuring the changes in the response of the full GABA(A) receptor agonist isoguvacine (IGU) induced by concurrent application of an antagonist. When added, the majority of the antagonists did not affect the rate of deactivation of the IGU-induced responses. When removed, however, the majority of the antagonists slowed the reactivation phase of IGU implying that the dissociation of the antagonist from the GABA(A) receptor is the rate-limiting step. Surprisingly, the functional off-rates of the antagonists seemed to correlate better with the lipophilicity of the compounds than with the affinity and potency. This suggests that the dissociation of the tested antagonists from the GABA(A) receptor is restricted by lipophilic interactions, perhaps with the aromatic amino acids surrounding the GABA binding site.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuropharm.2006.10.004 | DOI Listing |
Neurochem Res
January 2025
Laboratory of Chinese Medicine Brain Science, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
Maintaining GABAergic inhibition within physiological limits in the medial prefrontal cortex (mPFC) is critical for working memory. While synaptic GABAR typically mediate the primary component of mPFC inhibition, the role of extrasynaptic δ-GABAR in working memory remains unclear. To investigate this, we used fiber photometry to examine the effects of δ-GABAR in freely moving mice.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
Background: Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β (Aβ) plaques and tau tangles in the brain, and neurotransmission dysfunctions. Indeed, our group recently demonstrated that the γ-aminobutyric acid (GABA)ergic system is vulnerable to AD pathology in humans. However, whether this vulnerability is also present in AD rodent models is still unknown.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
School of Pharmacy, Nantong University, Nantong, Jiangsu, China.
Aims: N-Demethylsinomenine (NDSM) demonstrates good analgesic efficacy in preclinical pain models. However, how NDSM exerts analgesic actions remains unknown.
Methods: We examined the analgesic effects of NDSM using both pain-evoked and pain-suppressed behavioral assays in two persistent pain models.
PLoS One
January 2025
Department of Molecular Medicine, Brain Signalling Laboratory, Institute of Basic Medical Sciences, Section for Physiology, University of Oslo, Oslo, Norway.
Propofol and ketamine are widely used general anaesthetics, but have different effects on consciousness: propofol gives a deeply unconscious state, with little or no dream reports, whereas vivid dreams are often reported after ketamine anaesthesia. Ketamine is an N-methyl-D-aspartate (NMDA) receptor antagonist, while propofol is a γ-aminobutyric-acid (GABAA) receptor positive allosteric modulator, but these mechanisms do not fully explain how these drugs alter consciousness. Most previous in vitro studies of cellular mechanisms of anaesthetics have used brain slices or neurons in a nearly "comatose" state, because no "arousing" neuromodulators were added.
View Article and Find Full Text PDFArch Razi Inst
June 2024
Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
Gastrointestinal dysfunction is a severe and common complication in diabetic patients. Some evidence shows that gamma-aminobutyric acid (GABA) and glutamate contribute to diabetic gastrointestinal abnormalities. Therefore, we examined the impact of prolonged treatment with insulin and magnesium supplements on the expression pattern of GABA type A (GABA-A), GABA-B, and N-methyl-D-aspartate (NMDA) glutamate receptors as well as nitric oxide synthase 1 (NOS-1) in the stomach of type 2 diabetic rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!